Atmospheric oxidation of new “green” solvents – Part 2: methyl pivalate and pinacolone

Mapelli, C., Donnelly, J. K., Hogan, U. E. , Rickard, A. R., Robinson, A. T., Byrne, F., McElroy, C., Curchod, B. F. E., Hollas, D. and Dillon, T. J. (2023) Atmospheric oxidation of new “green” solvents – Part 2: methyl pivalate and pinacolone. Atmospheric Chemistry and Physics, 23 (13). ISSN 1680-7316

Full content URL:

Full text not available from this repository.

Item Type:Article
Item Status:Live Archive


Lab-based experimental and computational methods were used to study the atmospheric degradation of two promising “green” solvents: pinacolone, (CH3)3CC(O)CH3, and methyl pivalate, (CH3)3CC(O)OCH3. Pulsed laser photolysis coupled to pulsed laser-induced fluorescence was used to determine absolute rate coefficients (in 10−12 cm3 molec.−1 s−1) of k1(297 K) = (1.2 ± 0.2) for OH + (CH3)3CC(O)CH3 (Reaction R1) and k2(297 K) = (1.3 ± 0.2) for OH + (CH3)3CC(O)OCH3 (Reaction R2), in good agreement with one previous experimental study. Rate coefficients for both reactions were found to increase at elevated temperature, with k1(T) adequately described by k1(297–485 K) = 2.1 × 10−12 exp( cm3 molec.−1 s−1. k2(T) exhibited more complex behaviour, with a local minimum at around 300 K. In the course of this work, k3(295–450 K) was obtained for the well-characterised reaction OH + C2H5OH (ethanol; Reaction R3), in satisfactory agreement with the evaluated literature.

UV–Vis spectroscopy experiments and computational calculations were used to explore cross-sections for (CH3)3CC(O)CH3 photolysis (Reaction R4), while (CH3)3CC(O)OCH3 showed no sign of absorption over the wavelengths of interest. Absorption cross-sections for (CH3)3CC(O)CH3, σ4(λ), in the actinic region were larger, and the maximum was red-shifted compared to estimates (methyl ethyl ketone (MEK) values) used in current state-of-science models. As a consequence, we note that photolysis (Reaction R4) is likely the dominant pathway for removal of (CH3)3CC(O)CH3 from the troposphere. Nonetheless, large uncertainties remain as quantum yields φ4(λ) remain unmeasured. Lifetime estimates based upon Reactions (R1) and (R4) span the range 2–9 d and are consequently associated with a poorly constrained estimated photochemical ozone creation potential (POCPE). In accord with previous studies, (CH3)3CC(O)OCH3 did not absorb in the actinic region, allowing for straightforward calculation of an atmospheric lifetime of ≈ 9 d and a small POCPE ≈ 11.

Keywords:atmospheric chemistry, chemical bonding, chemical reaction, chlorine, hydroxyl radical, photochemistry, quantum mechanics, solvent, volatile organic compound
Subjects:F Physical Sciences > F100 Chemistry
Divisions:College of Science > School of Chemistry
ID Code:55592
Deposited On:03 Aug 2023 12:03

Repository Staff Only: item control page