Distributed Network System for Real-Time Model Based Control of Industrial Gas Turbines

Panov, Vili (2012) Distributed Network System for Real-Time Model Based Control of Industrial Gas Turbines. In: ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, June 6–10, 2011, Vancouver, British Columbia, Canada.

Full content URL: https://doi.org/10.1115/GT2011-45298

Documents
Distributed Network System for Real-Time Model Based Control of Industrial Gas Turbines
Conference Paper
[img]
[Download]
[img]
Preview
PDF
GT2011_45298.pdf - Whole Document

338kB
Item Type:Conference or Workshop contribution (Paper)
Item Status:Live Archive

Abstract

This paper describes the development of a distributed network system for real-time model based control of industrial gas turbine engines. Distributed control systems contribute toward improvements in performance, testability, control system maintainability and overall life-cycle cost. The goal of this programme was to offer a modular platform for improved model based control system. Hence, another important aspect of this programme was real-time implementation of non-linear aero-thermal gas turbine models on a dedicated hardware platform. Two typical applications of real-time engine models, namely hardware-in-the-loop simulations and on-line co-simulations, have been considered in this programme. Hardware-in-the-loop platform has been proposed as a transitional architecture, which should lead towards a fully distributed on-line model based control system. Distributed control system architecture offers the possibility of integrating a real-time on-line engine model embedded within a dedicated hardware platform. Real-time executing models use engine operating conditions to generate expected values for measured and non-measured engine parameters. These virtual measurements can be used for the development of model based control methods, which can contribute towards improvements in engine stability, performance and life management. As an illustration of model based control concept, the example of gas turbine transient over-temperature protection is presented in this study.

Keywords:Real time systems, model based systems, Control Systems, Gas Turbine, Distributed systems
Subjects:H Engineering > H660 Control Systems
H Engineering > H321 Turbine Technology
H Engineering > H300 Mechanical Engineering
Divisions:College of Science > School of Engineering
Related URLs:
ID Code:54437
Deposited On:27 Apr 2023 12:13

Repository Staff Only: item control page