Direct deposition of anatase TiO2 on thermally unstable gold nanobipyramid: Morphology-conserved plasmonic nanohybrid for combinational photothermal and photocatalytic cancer therapy

Jang, Dohyub, Yu, Subin, Chung, Kyungwha , Yoo, Jounghyun, Marques Mota, Filipe, Wang, Jianfang, Ahn, Dong June, Kim, Sehoon and Kim, Dong Ha (2022) Direct deposition of anatase TiO2 on thermally unstable gold nanobipyramid: Morphology-conserved plasmonic nanohybrid for combinational photothermal and photocatalytic cancer therapy. Applied Materials Today, 27 . p. 101472. ISSN 2352-9407

Full content URL: https://doi.org/10.1016/j.apmt.2022.101472

Documents
Direct deposition of anatase TiO2 on thermally unstable gold nanobipyramid: Morphology-conserved plasmonic nanohybrid for combinational photothermal and photocatalytic cancer therapy
Author's accepted manuscript
[img]
[Download]
[img]
Preview
PDF
Applied Materials Today, 27 101472 AAM.pdf - Whole Document
Available under License Creative Commons Attribution 4.0 International.

5MB
Item Type:Article
Item Status:Live Archive

Abstract

Deposition of crystalline titanium dioxide (TiO2) on gold nanostructures has been considered as a promising strategy for near-infrared (NIR) light-activated photocatalysis. A typical route comprises pre-deposition of amorphous TiO2 on the gold surface and its ensuing crystallization by high-temperature annealing. Such condition, however, is not compatible with highly plasmonic but thermally unstable sharp-tipped gold nanostructures, causing structural disruption and plasmonic decline. Herein, we report a hybridization method excluding high-temperature annealing, i.e., direct deposition of anatase TiO2 onto sharp-tipped gold nanobipyramid (Au NBP/a-TiO2) with conserving their morphology without agglomeration via low-temperature hydrothermal reaction. In addition to keeping the plasmonic photothermal performance, Au NBP/a-TiO2 exhibits enhanced photocatalytic generation of reactive oxygen species in response to the NIR excitation, evidencing the efficient injection of hot electrons from the Au NBP to the anatase shell. In vitro and in vivo studies revealed that the efficient photocatalytic/photothermal responses of Au NBP/a-TiO2, along with dispersion stability in biological media and minimal toxicity, hold potential for synergistic photothermal and photodynamic therapy. We believe that the low-temperature synthetic method introduced here might offer a general way of crystalline deposition of TiO2 on a variety of gold nanostructures, broadening the spectrum of NIR-responsive photocatalytic hybrid nanostructures for biomedical applications.

Keywords:gold nanobipyramid, heterojunction structure, photodynamic therapy, anatase titanium dioxide, near-infrared photocatalysis
Subjects:F Physical Sciences > F200 Materials Science
F Physical Sciences > F110 Applied Chemistry
C Biological Sciences > C741 Medical Biochemistry
Divisions:College of Science > School of Chemistry
ID Code:53633
Deposited On:13 Apr 2023 14:53

Repository Staff Only: item control page