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Mean-field models of size selection in polymer vesicles with and 

without interdigitation 

Block copolymers in solution can form vesicles with a preferred size when the 

degree of polymerisation 𝑁𝐵 of the hydrophobic block is significantly greater 

than that of the hydrophilic block. In an earlier publication, we introduced a 

mean-field theory that treats the vesicle membrane as a bilayer. Here, a model is 

presented in which the hydrophobic blocks form a single interdigitated layer. In 

the model with interdigitation, the vesicles still have a preferred radius, but this 

increases more slowly as a function of 𝑁𝐵 than in the bilayer model, in better 

agreement with experiment. However, the predictions of the bilayer model for the 

relationship between 𝑁𝐵 and the vesicle membrane thickness 𝑇𝑚 are consistent 

with the experimental result 𝑇𝑚 ∝ 𝑁𝐵
0.79 over a wide range of parameters, while 

the model with interdigitation predicts an exponent of around 2/3. This suggests 

that the structure of the vesicles may lie between these two cases. 
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Introduction 

Amphiphilic molecules such as block copolymers can self-assemble into various 

structures in solution [1]. An example of such a structure is the vesicle, a bag-like 

membrane that encloses a volume of solvent. Controlling the size of vesicles is of 

interest, as these aggregates can be used to encapsulate and deliver drugs [2], and 

the size of a vesicle determines the dosage it contains. However, this is a difficult 

problem [3], since there is not always a direct link between the size of a vesicle 

and the architecture of the polymers of which it is formed. The factor that 

determines the size of vesicles formed by self-assembly in solution is commonly 

their translational entropy [4, 5]. Although it restricts the size of vesicles, this 

effect does not lead to precise control over their radius [6, 7], which also depends 

strongly on the concentration of amphiphiles [8]. Control over vesicle size is often 

gained in practice by using mechanical methods such as filtration [9] or de-

wetting from a patterned surface [10]. It is also possible to induce a preferred 

curvature in a vesicle membrane, thereby fixing its size, by mixing two types of 

amphiphile [11] or by using copolymers with several sections [3]. Unfortunately, 

these final two methods introduce their own complications, with structures other 



 

 

than vesicles forming when two amphiphiles are mixed and more sophisticated 

synthesis being necessary to form complex copolymers [3]. 

 However, in experiments carried out by Warren et al [12], vesicles with a small 

range of sizes have been formed by self-assembly in a solution of only one species of 

diblock copolymer. In this work, vesicles with very similar size distributions were made 

by two different methods: polymerisation-induced self-assembly (PISA), where the 

hydrophobic block continues to grow as the self-assembly takes place, and rehydration 

of a film of copolymer [12]. This implies that the equilibrium phase in this system may 

be a suspension of vesicles with a narrow size distribution. The distinguishing feature of 

the polymers that form these vesicles is that they are highly asymmetric, with the 

hydrophobic block containing as many as 15 times more repeat units than the 

hydrophilic block [12]. 

In an earlier publication [13], we reported a simple mean-field model that 

reproduced several aspects of these experimental systems. The model contained a free-

energy minimum that corresponded to a preferred size for the vesicles, and this 

minimum appeared when the hydrophobic block of the copolymers was significantly 

longer than the hydrophilic block. The instability of the vesicles at very high block 

asymmetries seen in the above experiments was also reproduced by the model. An 

assumption of this theory was that the vesicle membrane consisted of a bilayer, that is, 

two distinct layers of molecules (see Fig. 1). However, this is not the only possibility 

[14] and it has been found in both experiments [15] and simulations [16] that long 

copolymers can form an interdigitated structure in which the hydrophobic blocks of the 

inner and outer layers of the membrane interpenetrate (see Fig. 2). In this report, we 

present a model including interdigitation. Our first motivation is to show that the 

prediction of a preferred size for the vesicles is not an artefact of assuming the existence 

of two bilayers and our second is to compare the predictions of the two models to 

attempt to see which physical picture is more appropriate. 

 

Mean-field model with interdigitation 

 

Mean-field models have been employed to investigate the self-assembly of micelles 

[17–20] and of flat bilayers [21]. These theories agree quite well with experiments on 

micelle formation in both blends of block copolymers with homopolymers [22] and in 



 

 

solutions of block copolymers [23]. They are computationally much less expensive than 

alternative methods such as coarse-grained simulations [16], making them a useful tool 

for preliminary investigations of a system. To construct a mean-field model for 

amphiphile self-assembly, assumptions are made for the main contributions to the free 

energy of a system of aggregates. Examples of effects that are typically included are 

[17] the free energy costs associated with forming an interface at the boundary of the 

core of an aggregate and with deforming the copolymers with respect to their 

unperturbed state. 

The various terms in the free energy are then summed, and the resulting function 

is minimised, giving predictions for a range of quantities, such as the number of 

molecules in each aggregate. Here, this approach is used to study a suspension of 

spherical vesicles. Given that the aim of this work is to capture the basic physics of the 

system and allow a more detailed model to be developed in the future, the theory is 

formulated for a simple system in which the copolymers that form the vesicles consist 

of 𝑁𝐴 A monomers and 𝑁𝐵 B monomers and are dispersed in homopolymers each 

containing 𝑁ℎ A monomers. 

The first contributions to the free energy to be introduced are those for a single 

vesicle. As referred to above, there will be a term that models the deformation of the 

copolymer molecules [17]. Following the approach of [17, 24] and including both the 

polymers whose hydrophilic blocks constitute the outer layer of the vesicle (see Fig. 2) 

and those whose hydrophilic blocks constitute the inner layer, we have 

ℱ𝒹 =
3

2
𝑘𝑇 {𝑝1 [

(𝑅1 − 𝑅0)2

𝑁𝐴𝑎2
+

𝑁𝐴𝑎2

(𝑅1 − 𝑅0)2
+

(𝑅2 − 𝑅1)2

𝑁𝐵𝑎2
+

𝑁𝐵𝑎2

(𝑅2 − 𝑅1)2
− 4]

+ 𝑝2 [
(𝑅2 − 𝑅1)2

𝑁𝐴𝑎2
+

𝑁𝐴𝑎2

(𝑅2 − 𝑅1)2
+

(𝑅3 − 𝑅2)2

𝑁𝐵𝑎2
+

𝑁𝐵𝑎2

(𝑅3 − 𝑅2)2
− 4]}   (1) 

where 𝑘 is Boltzmann's constant, 𝑇 is the temperature, 𝑎 is the segment length, 𝑝1 is the 

number of copolymers whose hydrophilic blocks point towards the centre of the vesicle,  

𝑝2 is the number whose hydrophilic blocks point outwards and the 𝑅𝑖 are the radii 

shown in Fig. 2. When the molecules are in their unperturbed state, the numerator of 

each term becomes equal to the corresponding denominator and the expression overall 

is zero. Correspondingly, an energy penalty is given when the copolymers are stretched 

or compressed away from their unperturbed state. It should be noted that this is a very 

simple model for chain stretching, and more sophisticated theories are available, such as 

the strong-stretching models reviewed in [25]. However, use of these approaches would 



 

 

require more detail in several aspects of the current model, in particular the position 

dependence of the various volume fractions. Here, our goal is to capture the basic 

phenomenology and scaling of this system in as simple a theory as possible, and, as will 

be discussed in the final section, we believe that a more promising next step would be to 

move directly to a more microscopic model such as self-consistent field theory [26] 

rather than refining individual terms in the current model. 

It is assumed that the hydrophilic layers of the vesicle (light grey in Fig. 2) are 

composed of copolymer A blocks mixed with solvent, and the hydrophobic layers (dark 

grey in Fig. 2) of copolymer B blocks mixed with solvent. A term is therefore included 

that models the entropy of mixing of the copolymer chains with the solvent [17]. For the 

vesicle shown in Fig. 2, this is 

ℱ𝓂 = ∑
4𝜋

3

3

𝑖=1

𝑅𝑖
3 − 𝑅𝑖−1

3

𝑎3
𝑘𝑇

1 − 𝜂𝑖

𝑁ℎ
ln(1 − 𝜂𝑖) , (2) 

where the volume fraction of copolymer in each layer is 𝜂𝑖. Since the vesicle has three 

layers, the index 𝑖 runs from 1 to 3. The volume fraction in the central layer 𝜂2 is 

allowed to take values less than one in order to model the ingress of water into the 

vesicle membrane seen in the experiments of Warren et al [12]. 

The solvent that penetrates into the central layer of the vesicle membrane has a 

repulsive interaction with the hydrophobic blocks in this region. This is modelled by 

[23] the following term in the free energy: 

ℱcore =
4𝜋

3

(𝑅2
3 − 𝑅1

3)

𝑎3
𝑘𝑇𝜂2(1 − 𝜂2)𝜒, (3) 

where 𝜒 is the Flory-Huggins parameter that determines the strength of the interaction. 

Within the vesicle membrane, there are two surfaces that divide a hydrophilic 

layer from the mainly hydrophobic central layer. Each of these surfaces gives a 

contribution to the vesicle free energy [17, 27] that is proportional to its area and to √𝜒. 

Since the central layer contains some solvent [23], the surface free energy is lower than 

it would be for an interface between a purely hydrophobic and a purely hydrophilic 

layer. This can be modelled [23] by including an extra factor of 𝜂2, yielding 

ℱ𝑖𝑛𝑡 = 4𝜋𝑅1
2

𝑘𝑇

𝑎2
√

𝜒

6
𝜂2 + 4𝜋𝑅2

2
𝑘𝑇

𝑎2
√

𝜒

6
𝜂2.        (4) 

The total free energy of a single vesicle can now be calculated by summing the 

terms introduced above: ℱ = ℱ𝒹 + ℱ𝓂 + ℱ𝑖𝑛𝑡. It is also assumed that the system is 

incompressible. This allows the volume fractions in a given layer 𝜂𝑖 to be expressed in 



 

 

terms of the dimensions of that layer, the number of copolymers in it and the degree of 

polymerisation of the relevant block. For example, in layer 1, 𝜂1 = 3𝑝1𝑁𝐴𝑎3/

[4𝜋(𝑅1
3 − 𝑅0

3)]. 

The first step in calculating the free energy of a system of vesicles is to find an 

expression for the number of vesicles. If Ω is the total number of monomers in the 

system (including both copolymers and solvent), 𝜙 is the volume fraction of 

copolymers and ζ is the fraction of copolymer chains in vesicles, then the total number 

of vesicles is found by dividing the total number of monomers in vesicles, Ω𝜙𝜁, by the 

number of monomers in one vesicle, giving Ω𝜙𝜁/[(𝑝1 + 𝑝2)(𝑁𝐴 + 𝑁𝐵)]. The total free 

energy of the system can then be written as 

𝐹𝑀 = {Ω𝜙𝜁/[(𝑝1 + 𝑝2)(𝑁𝐴 + 𝑁𝐵)]}ℱ + 𝐹mix − 𝑇𝑆𝑚, (5) 

The final two terms are the free energy of mixing of solvent and copolymers 

outside the vesicles [28] and the translational entropy of the vesicles [17] respectively. 

As in [13], the first of these is given by 

𝐹mix

𝑘𝑇
= Ω(1 − 𝜉𝜙𝜁) [

𝜙1

𝑁𝐴 + 𝑁𝐵
ln 𝜙1 +

1 − 𝜙1

𝑁ℎ
ln(1 − 𝜙1) 

+
χ𝑁𝐵𝜙1

𝑁𝐴 + 𝑁𝐵
(1 −

𝜙1𝑁𝐵

𝑁𝐴 + 𝑁𝐵
)] , (6) 

where Ω(1 − 𝜉𝜙𝜁) is the total number of monomers outside the vesicles and 𝜙1 =

𝜙(1 − 𝜁)/(1 − 𝜉𝜙𝜁) is the fraction of monomers outside vesicles that belong to 

copolymers. However, since the vesicle now consists of three layers with both outward- 

and inward-pointing polymers in the central layer, the quantity 𝜉 is now given by 

𝜉 =
1

(𝑝1 + 𝑝2)(𝑁𝐴 + 𝑁𝐵)
(

𝑝1𝑁𝐴

𝜂1
+

(𝑝1 + 𝑝2)𝑁𝐵

𝜂2
+

𝑝2𝑁𝐴

𝜂3
).         (7) 

Again as in [13], the translational entropy of micelles is 

𝑆𝑚

𝑘
= −Ω {

𝜙𝜁

(𝑝1 + 𝑝2)(𝑁𝐴 + 𝑁𝐵)
ln(𝜙𝜁𝜉) +

1 − 𝜙𝜁𝜉

𝜉(𝑝1 + 𝑝2)(𝑁𝐴 + 𝑁𝐵)
ln(1 − 𝜙𝜁𝜉)} , (8) 

but with 𝜉 now modified to 𝜉 = 4𝜋𝑅3
3/[(𝑝1 + 𝑝2)(𝑁𝐴 + 𝑁𝐵)3𝑎3] since the outer radius 

in the model with interdigitation is 𝑅3 rather than 𝑅4.  

In each numerical calculation, 𝑁𝐴, 𝑁𝐵, 𝜒 and the outer radius 𝑅3 are fixed and 

the free energy in Eqn. (5) is minimised with a direction set approach [29] with respect 

to 𝑅0, 𝑅1, 𝑅2, 𝑝1, 𝑝2 and 𝜙1. This calculation is then repeated for a range of values of 

𝑅3, allowing the free energy to be plotted as a function of the outer radius. If this graph 

has a minimum, the value of 𝑅3 at this point will give the preferred radius of the vesicle. 



 

 

Results 

To make a direct comparison with the results of [13], the same values for the fixed 

polymer degrees of polymerisation are chosen (𝑁𝐴 = 100, 𝑁ℎ = 1). The values of the 

copolymer volume fraction (𝜙 = 0.01) and the Flory-Huggins interaction parameter 

(𝜒 = 2) are also set to the values used in this earlier paper. Choosing 𝜙 = 0.01 gives a 

dilute system in which the interactions of the vesicles may be neglected. The relatively 

high value of 𝜒 was chosen in [13] to make sure that aggregation occurs for a range of 

values of 𝑁𝐵. It will be seen later that, for all systems in the interdigitated model and 

most systems in the bilayer model, lowering this parameter to 𝜒 = 1 (more typical of 

hydrophobic block-solvent interactions [30]) does not strongly affect the results. Plots 

of 𝐹𝑀/Ω𝑘𝑇 as a function of 𝑁𝐵 with the other parameters set to the values above are 

shown in Fig. 3. As in the case of the bilayer model, we find a minimum in the free 

energy as a function of 𝑅3 for certain values of 𝑁𝐵, showing that the prediction of a 

preferred size for the vesicles is not an artefact of the bilayer assumption. This 

minimum first appears at 𝑁𝐵 ≈ 400 (Fig. 3(a)) and moves outwards as 𝑁𝐵 is increased, 

remaining present until around 𝑁𝐵 ≈ 900 (Fig. 3(c)). This range is much broader than 

for the corresponding polymers in the bilayer model, where the vesicle is only stable 

between 𝑁𝐵 ≈ 380 and 𝑁𝐵 ≈ 440. As in the case of the bilayer model, the minimum 

vanishes (Fig. 3(d)) as the degree of polymerisation of the hydrophobic block is 

increased beyond a critical value (here, 𝑁𝐵 ≈ 1000) and the vesicle morphology 

becomes unstable. 

To continue the comparison of the models with and without interdigitation, we 

now consider longer copolymers with 𝑁𝐴 set to 1000 and 𝑁𝐵 allowed to vary (Fig. 4). 

The other parameters are set as above. In these systems, clear minima in the free energy 

are found for a range of values of 𝑁𝐵. As for 𝑁𝐴 = 100, this minimum is present for a 

wider range of values of 𝑁𝐵 in the model with interdigitation than in the bilayer model. 

In Fig. 4(a), where 𝑁𝐵 = 7000, the minimum is just visible; in Fig. 4(c), where 𝑁𝐵 =

29000, it is still apparent but has moved to a much larger value of 𝑅3. When 𝑁𝐵 =

32000 (Fig. 4(d)), the preferred radius is no longer present. The value of 𝑁𝐵 at which 

the vesicle becomes unstable is significantly higher than than that (𝑁𝐵 ≈ 17500) in the 

bilayer model. 

The basic phenomenology is similar in both models: vesicles with an optimum 

size are stable when the polymers are sufficiently asymmetric (𝑁𝐵 ≫ 𝑁𝐴) and become 



 

 

unstable when the degree of polymerisation of the hydrophobic block increases beyond 

a critical value. To compare the models in more detail, we now plot the outer radius of 

the vesicle against the degree of polymerisation 𝑁𝐵 of the hydrophobic block for 𝑁𝐴 =

100 (Fig. 5(a)) and 𝑁𝐴 = 1000 (Fig. 5(b)). In both cases, the outer radius grows more 

slowly as a function of 𝑁𝐵 in the interdigitated model than in the bilayer model and, as 

noted earlier, the vesicles remain stable over a wider range of 𝑁𝐵 when interdigitation is 

included. Arguably, this slow growth is in better agreement with experimental results 

[12], where the outer radius of the vesicles remains close to constant as 𝑁𝐵 is increased. 

 To make a quantitative comparison between the two models, the dependence of 

the membrane thickness 𝑇𝑚 on 𝑁𝐵 is calculated for each model for a range of values of 

hydrophilic block degrees of polymerisation 𝑁𝐴. For each value of 𝑁𝐴, 𝑇𝑚 vs. 𝑁𝐵 is 

plotted over the full range of 𝑁𝐵 for which the vesicles are stable. 𝑇𝑚 is defined as the 

thickness of the hydrophobic layer [12] and is given by 𝑅2 − 𝑅1 in the model with 

interdigitation and by 𝑅3 − 𝑅1 in the bilayer model. Fig. 6 shows log-log plots of 𝑇𝑚 as 

a function of 𝑁𝐵 for a range of hydrophilic block degrees of polymerisation from 𝑁𝐴 =

100 to 𝑁𝐴 = 1500. Each panel shows results from 𝜒 = 1 (lowest curve) to  𝜒 = 3 

(uppermost curve) with 𝜒 increasing in steps of 0.5. All curves are close to being power 

laws with an exponent of approximately 2/3. This is the value predicted for the lamellar 

domain spacing in strongly stretched chains in the bulk [31], which might be expected 

given the similarity between a vesicle bilayer, particularly at larger vesicle radii, and a 

bulk lamellar phase. An exponent of 2/3 has also been observed [15] in experiments on 

vesicles formed of less strongly asymmetric copolymers. However, it is not in 

agreement with the experiments on highly asymmetric polymers of relevance here [12], 

where an exponent of 0.79 is observed. 

 Fig. 7 shows the predictions of the bilayer model for the same parameters. Here, 

most of the curves can be well approximated by power laws, with the exponent being 

close to the experimental value of 0.79 [12]. The exception is the shortest set of 

polymers (𝑁𝐴 = 100), where the vesicle is at the limit of being stable, only forming, as 

was noted earlier in this article and in [13], for a very narrow range of 𝑁𝐵. Even in this 

case, however, the curves for the larger values of the Flory-Huggins parameter (𝜒 =

2, 2.5 and 3) are close to power law 𝑇𝑚 ∝ 𝑁𝐵
0.79 for lower values of 𝑁𝐵, deviating as 𝑁𝐵 

approaches the value where the vesicle becomes unstable. 

 



 

 

Discussion 

 

By developing a mean-field model of vesicle formation in which the inner region of the 

vesicle membrane is composed of a single layer of interdigitated hydrophobic blocks, 

we have shown that the formation of vesicles of a preferred size for highly asymmetric 

copolymers is a robust prediction of mean-field models and does not depend on the 

assumption made in our earlier work [13] that the vesicle membrane is composed of two 

distinct layers of copolymers. Although the basic phenomenology of the two models is 

similar, it was shown that the model with interdigitation predicts that the vesicles should 

remain stable over a wider range of parameters than the bilayer model. The 

interdigitated model also predicts that the vesicle radius will be a less rapidly growing 

function of 𝑁𝐵 than does the bilayer model, in arguably better agreement with 

experiments. However, the predictions of the bilayer model for the growth of the vesicle 

membrane thickness 𝑇𝑚 are clearly better than those of the interdigitated model and are 

consistent with the experimental result of 𝑇𝑀 ∝ 𝑁𝐵
0.79 over a wide range of parameters. 

A possible explanation for this, advanced in [15], is that the structure of vesicle 

membranes lies between the extreme cases considered here and the central hydrophobic 

layer is neither completely segregated into two layers nor perfectly interdigitated. 

Both models share the shortcoming of not predicting the experimental 

observation of the thickening of the vesicle membrane at almost constant overall vesicle 

radius as 𝑁𝐵 is increased. A natural way of attempting to resolve this would be to model 

the system using self-consistent field theory (SCFT) [26]. Since SCFT and models of 

the kind studied here can agree well [32] for the self-assembly of micelles, the 

parameters from the current study could be used as starting values in the SCFT 

calculations. SCFT has been used to model a range of related systems, such as polymer 

brushes [33], bilayers [34] and micelles [35] and would provide a more detailed model 

of the system, with, for example, the interfaces no longer assumed to be perfectly sharp. 

It would also allow different interaction strengths between the various species in the 

system to be included, thereby relaxing the current assumption that the solvent consists 

of monomers of the same chemical composition as the hydrophilic blocks of the 

copolymers. Such a model would identify regions where vesicles of a preferred size are 

likely to form and allow this morphology to be targeted in experiments. 
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Figure 1. Cross-section of a spherical bilayer vesicle with outer radius 𝑅4. The 

hydrophobic layers are shaded dark grey, and the hydrophilic layers are shaded light 

grey. The vesicle is surrounded by solvent and encloses a spherical volume of solvent 

with radius 𝑅0. Two sample individual polymer molecules are shown. One of these lies 

in the inner layer and the other in the outer layer. 



 

 

 

Figure 2. Cross-section of an interdigitated spherical vesicle with outer radius 𝑅3. The 

central dark grey layer is hydrophobic, and the light grey layers are hydrophilic. As in 

Figure 1, the vesicle is surrounded by solvent and encapsulates a spherical volume of 

solvent with radius 𝑅0. Two sample individual polymers are shown, one with its 

hydrophilic block in the inner layer and the other with its hydrophilic block in the outer 

layer. 

 



 

 

Figure 3. Total free energy of the system of vesicles versus the outer radius of the 

vesicle at fixed hydrophilic block length 𝑁𝐴 = 100 and four different hydrophobic 

block lengths: (a) 𝑁𝐵 = 400; (b) 𝑁𝐵 = 700; (c) 𝑁𝐵 = 900; (d) 𝑁𝐵 = 1000. 

 

 

 

Figure 4. The total free energy of the system of vesicles as a function of the outer radius 

of the vesicle at fixed hydrophilic block length 𝑁𝐴 = 1000 and four different 

hydrophobic block lengths: (a) 𝑁𝐵 = 7000; (b) 𝑁𝐵 = 15000; (c) 𝑁𝐵 = 29000; (d) 

𝑁𝐵 = 32000. 

 

 



 

 

 

Figure 5. Outer radius of the vesicle versus the degree of polymerisation of the 

hydrophobic block for (a) 𝑁𝐴 = 100 and (b) 𝑁𝐴 = 1000. The full lines show the results 

for the interdigitated model (outer radius 𝑅𝑛 = 𝑅3) and the dashed lines those for the 

bilayer model (outer radius 𝑅𝑛 = 𝑅4). 

 

Figure 6. Membrane thickness in the interdigitated model 𝑇𝑚 = 𝑅2 − 𝑅1 plotted against 

𝑁𝐵 for (a) 𝑁𝐴 = 100; (b) 𝑁𝐴 = 500; (c) 𝑁𝐴 = 1000; (d) 𝑁𝐴 = 1500. In each panel, the 

five curves correspond to χ = 1 (lowest curve), χ = 1.5, χ = 2, χ = 2.5 and χ = 3 

(highest curve). The dashed lines show power laws with an exponent of 2/3. 

 



 

 

 

Figure 7. Membrane thickness in the bilayer model 𝑇𝑚 = 𝑅3 − 𝑅1 plotted against 𝑁𝐵 

for (a) 𝑁𝐴 = 100; (b) 𝑁𝐴 = 500; (c) 𝑁𝐴 = 1000; (d) 𝑁𝐴 = 1500. In (b) to (d), the five 

curves correspond to χ = 1 (lowest curve), χ = 1.5, χ = 2, χ = 2.5 and χ = 3 (highest 

curve). The dashed lines show power laws with an exponent of 0.79. In (a), the χ = 1 

curve is missing as the vesicle is not stable for this value. 

 


