Sabegh, Mohammad
(2022)
DEEP REINFORCEMENT LEARNING AND MODEL PREDICTIVE CONTROL APPROACHES FOR THE SCHEDULED OPERATION OF DOMESTIC REFRIGERATORS.
PhD thesis, University of Lincoln.
DEEP REINFORCEMENT LEARNING AND MODEL PREDICTIVE CONTROL APPROACHES FOR THE SCHEDULED OPERATION OF DOMESTIC REFRIGERATORS | Electronic submission form | | ![[img]](/style/images/fileicons/application_msword.png) [Download] |
| DEEP REINFORCEMENT LEARNING AND MODEL PREDICTIVE CONTROL APPROACHES FOR THE SCHEDULED OPERATION OF DOMESTIC REFRIGERATORS | PhD Thesis | | ![[img]](/50544/2.hassmallThumbnailVersion/MoRe%20thesis-%20Final%20Version.pdf) [Download] |
|
Item Type: | Thesis (PhD) |
---|
Item Status: | Live Archive |
---|
Abstract
Excess capacity of the UK’s national grid is widely quoted to be reducing to around 4% over the coming years as a consequence of increased economic growth (and hence power usage) and reductions in power generation plants. There is concern that short term variations in power demand could lead to serious wide-scale disruption on a national scale. This is therefore spawning greater attention on augmenting traditional generation plants with renewable and localized energy storage technologies, and consideration of improved demand side responses (DSR), where power consumers are incentivized to switch off assets when the grid is under pressure. It is estimated, for instance, that refrigeration/HVAC systems alone could account for ~14% of the total UK energy usage, with refrigeration and water heating/cooling systems, in particular, being able to act as real-time ‘buffer’ technologies that can be demand-managed to accommodate transient demands by being switched-off for short periods without damaging their outputs. Large populations of thermostatically controlled loads (TCLs) hold significant potential for performing ancillary services in power systems since they are well-established and widely distributed around the power network. In the domestic sector, refrigerators and freezers collectively constitute a very large electrical load since they are continuously connected and are present in almost most households. The rapid proliferation of the ‘Internet of Things’ (IoT) now affords the opportunity to monitor and visualise smart buildings appliances performance and specifically, schedule the operation of the widely distributed domestic refrigerator and freezers to collectively improve energy efficiency and reduce peak power consumption on the electrical grid. To accomplish this, this research proposes the real-time estimation of the thermal mass of individual refrigerators in a network using on-line parameter identification, and the co-ordinated (ON-OFF) scheduling of the refrigerator compressors to maintain their respective temperatures within specified hysteresis bands—commensurate with accommodating food safety standards. Custom Model Predictive Control (MPC) schemes and a Machine Learning algorithm (Reinforcement Learning) are researched to realize an appropriate scheduling methodology which is implemented through COTS IoT hardware. Benefits afforded by the proposed schemes are investigated through experimental trials which show that the co-ordinated operation of domestic refrigerators can 1) reduce the peak power consumption as seen from the perspective of the electrical power grid (i.e. peak power shaving), 2) can adaptively control the temperature hysteresis band of individual refrigerators to increase operational efficiency, and 3) contribute to a widely distributed aggregated load shed for Demand Side Response purposes in order to aid grid stability. Comparative studies of measurements from experimental trials show that the co-ordinated scheduling of refrigerators allows energy savings of between 19% and 29% compared to their traditional isolated (non-co-operative) operation. Moreover, by adaptively changing the hysteresis bands of individual fridges in response to changes in thermal behaviour, a further 20% of savings in energy are possible at local refrigerator level, thereby providing benefits to both network supplier and individual consumer.
Repository Staff Only: item control page