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Abstract— Human-robot interaction (HRI) requires quanti-
tative models of proxemics and trust for robots to use in
negotiating with people for space. Hall’s theory of proxemics has
been used for decades to describe social interaction distances
but has lacked detailed quantitative models and generative
explanations to apply to these cases. In the limited case of
autonomous vehicle interactions with pedestrians crossing a
road, a recent model has explained the quantitative sizes of
Hall’s distances to 4% error and their links to the concept
of trust in human interactions. The present study extends this
model by generalising several of its assumptions to cover further
cases including human-human and human-robot interactions.
It tightens the explanations of Hall zones from 4% to 1% error
and fits several more recent empirical HRI results. This may
help to further unify these disparate fields and quantify them to
a level which enables real-world operational HRI applications.

I. INTRODUCTION

Autonomous robotics including autonomous vehicles
(AVs) and service robots are now a reality, spreading from
research to real-world social environments around humans
[40]. Such environments raise new questions about how hu-
mans can trust robots, and how they should share their phys-
ical social spaces during human-robot interactions (HRI).

Social interaction is an important factor in making humans
and robots acceptable and trustworthy to the humans they
assist [4], and has been identified as one of ten major
robotics challenges [43]. Two major challenges within Social
Robotics were defined as modelling social dynamics, and
learning social and moral norms [43]. Robots may be more
accepted by people if they are socially aware, i.e. able to un-
derstand and reproduce these social norms and conventions.
Within these norms, trust is essential for building relation-
ships [26], [35]. Two important factors which influence the
acceptance of humans and robots and are used to assess their
social abilities are proxemics (i.e. interpersonal distances)
and trust.

Current robots lack an understanding of human social
behaviour, especially nonverbal communication which plays
an important role in human interactions. For instance, it was
shown that people have strong ‘social expectations’ towards
robots’ nonverbal cues [5]. This raises concerns: are robots’
social abilities good enough to interact with humans? Are
they safe? Can we trust them?

Most current models of human social behaviour are based
on qualitative studies and descriptive statistics. These are
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appropriate for reporting scientific findings, but they cannot
be easily operationalised into engineered, robotic decision-
making algorithms. More quantitative and computational
models are thus needed to better understand and prescribe
human-robot interactions, because numerical probabilities
and utilities are needed by most robotics control systems.

The present paper briefly reviews proxemics, trust, and the
recent PTR model [7] which links them quantitatively in the
limited case of pedestrian-autonomous vehicle interactions.
It then extends the PTR model to new, generalised cases
of human-human and human-robot interactions and presents
new results comparing the extended model’s predictions to
empirical data. These links could enable research to be
shared and operationalised between models of proxemics,
trust, and robotic interactions for the first time.

II. REVIEW OF PREVIOUS WORK

A. Review of Proxemics and Trust

This section presents a review of previous work on prox-
emics and trust for HRI, an extensive review of these topics
was introduced in [7].

Proxemics was proposed in the 1960’s by Hall [14], defin-
ing four distinct zones for human interactions: the intimate,
personal, social and public zones. Psychology studies then
measured these zones for human-human interactions, finding
that the intimate zone goes up to 0.45m, the personal ranges
from 0.45m to 1.2m, the social between 1.2m to 3.6m, and
the public beyond 3.6m [21]. These numbers are sometimes
inserted into costmaps for robotic interaction planning algo-
rithms. But we have lacked a theory to generate and explain
these empirical values. Social roboticists have found these
proxemic zones change in size when humans interact with
robots of different heights, appearances, speeds, voices, and
also for different HRI activities [30]. For example, for a
short, 1.35m height, humanoid robot approaching or being
approached by a human, the personal zone shrinks to the
range 0.4m to 0.6m [36].

Trust is commonly defined as ‘trusting a person means
believing that when offered the chance, he or she is not
likely to behave in a way that is damaging to us’ [3], [11].
A question is whether humans can build trust with robots
as they do with other people and through which means. For
instance, a set of questionnaire metrics was designed in [42]
to assess users’ acceptance and use of robots via five HRI
attributes, such as team configuration, team process, context,
task, and system, where trust in automation is defined as
depending on the level of autonomy of a system and also
on its level of intelligence. Thus most HRI trust experiments
have studied only humans’ qualitative acceptance of robots
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Fig. 1: Autonomous vehicle entering pedestrian’s social zone, which can also be viewed and quantified as a trust region.

[12], [25], [34]. But these qualitative models do not provide
enough information to directly implement them as quantita-
tive control systems for robotics.

B. The PTR Model: Linking Proxemics and Trust

Links between proxemics and trust have been proposed
via a quantitative model, intended for use in the limited
case of an autonomous vehicle, Agent2, interacting with a
pedestrian, Agent11, crossing its path [7] as in Fig. 1. In
this model, Physical Trust Requirement (PTR) is defined as
a Boolean property of the physical state of the world (not of
the psychology of the agents) with respect to Agent1 during
an interaction, true if and only if Agent1’s future utility is
affected by an immediate decision made by Agent2.

The model assumes that the two agents are approaching
each other at a right angle, as is the case where one crosses
the other’s path, as in Fig. 1. It then defines the following
three zones based on the PTR:

Crash zone is the region close to Agent1, {d : 0 < d <
dcrash},

dcrash = v2t2 +
v22

2µ2g
, (1)

in which a crash is guaranteed and neither party can prevent
it. v2 is Agent2’s speed. The first term depends on Agent2’s
thinking reaction time, t2, and the second term represents
the physical braking distance, µ2 is the coefficient of friction
between Agent2’s tyres and tarmac, and g is gravity [23].

Escape zone is the area where Agent1 is able to choose
their own action to avoid the collision, without needing to
trust Agent2 to behave in any particular way. If w2 is the
width of Agent2, which Agent1 must cross at speed v1 if they
wish to pass first, the escape zone is then {d : descape < d}
with

descape = v2t1 + w2
v2
v1
. (2)

Trust zone is the region {d : dcrash < d < descape} where
the PTR is true. Agent2 can here choose to slow down to
prevent collision, but Agent1 is incapable of making any
action to affect this outcome themselves. This occurs when

1Terminology: In the original model, Agent1 was called ‘the pedestrian’
and Agent2 called ‘the vehicle’. The terms Agent1 and Agent2 are used
throughout the present study to emphasise new generalities.

Agent1 cannot get out of Agent2’s way in time to avoid
collision, but Agent2 is able to slow and yield to prevent
the collision if it chooses to do so.

The zone ratio R = descape/dcrash is a measure of how
much trust (in the PTR sense) is involved in an interaction.

Zones are not symmetric between Agent1 and Agent2.
They describe when Agent1 must trust Agent2. Their roles
must be swapped and the zones recomputed to see when
Agent2 must trust Agent1. The crash, escape, and trust zones
were mapped to Hall’s personal, public, and social zones
respectively, for Agent1 [7], cf. Fig 1. The trust/social zone
is the region in which physical trust is required. This may be
a prerequisite for some types of interactions, with physical
trust being useful to enable the content of the interaction. The
evidence for this mapping came from the observation that if
an autonomous vehicle Agent2 is set to drive at the same
speed as a pedestrian Agent1, the model generates Hall’s
proxemic social zone to within 4% quantitative accuracy.
This unexpected result, found only by studying how an AV
should interact with road-crossing pedestrians, is suggestive
that this scenario may be a special case of a more general
HRI theory of proxemics and trust.

C. Limitations of the PTR Model

The PTR model made three key assumptions which limit
its application to general HRI:

Assumption 1: Agent2 is a wheeled vehicle, having mo-
mentum and a braking time. These dynamics are not appro-
priate for other types of Agent2 such as walking humans and
humanoids.

Assumption 2: The width of Agent2 is much larger than
that of Agent1, so it treated Agent1 as a point and Agent2 as
a rectangle, because a vehicle is bigger than a pedestrian and
most vehicles are rectangular. These geometric assumptions
are not appropriate for two human-like agents of similar size.

Assumption 3: The pedestrian has a goal: to cross the
road. The road crossing is orthogonal to the road. Thus the
pedestrian’s velocity is orthogonal to the vehicle’s. This is
a strong constraint which is not appropriate to general HRI
scenarios. Agent2 might in general approach Agent1 from
any direction, not just at right angles to Agent1’s initial
heading. We are now only interested in explaining the size



Fig. 2: New assumed geometry for the two agents.

of the trust zone which we assume is independent of any
goal for Agent1 other than avoiding a collision.

III. NEW EXTENSIONS TO THE PTR MODEL

The original PTR model was intended only for pedestrian
road-crossing interactions with vehicles. We here expand its
relevance to explain and predict new types of agents and
scenarios, including human-human and human-humanoid
robot interactions with approaches from arbitrary rather than
orthogonal directions. We extend and generalize the model
to address each of the above assumptions as follows.

Assumption 1: The second term on the right of Eq. (1) is
only applicable to wheeled vehicles as it models their braking
time. If Agent2 is a walking agent, we will now assume
this second term is omitted, as walkers are always in static
equilibrium so can stop instantly once a decision is made.
Models for running agents [20] or finer detailed models of
walkers [28] could insert different braking terms here.

Assumption 2: To allow for interactions between similarly
sized agents, we now modify Eq. (2) to:

descape = v2t1 + (w1 + w2)
v2
v1
, (3)

where w1+w2 is the total distance that Agent1 must travel in
front of Agent2 in order to avoid contact with Agent2. These
widths may now be mapped to Hall’s intimate/personal zones
of the agents, i.e. the ranges at which actual contact may
occur between the agents. Justification for this modification
can be seen in Fig. 2, which shows how Agent1 must move
its center point by half its own width at the start and end of
the path as well as passing by the width of Agent2, to avoid
the minimal possible collision.

Assumption 3: As our focus is now purely on understand-
ing proxemic and trust zones, we now drop the assumption
that Agent1 has a goal location, and consider that they simply
want to avoid being hit by Agent2. We thus want to allow
Agent2 to approach Agent1 from any heading θ, measured
relative to Agent1’s own initial heading as in Fig. 3. The
previous change from rectangular to circular agents is a first
step towards enabling this. We then need to consider the
direction in which Agent1 moves to escape from Agent2.
The best way to escape is always by moving orthogonal

Fig. 3: Possible interaction geometries. Green=Agent1; Pur-
ple= different possible positions and headings for Agent2. (θ
is the angle of Agent2’s approach from Agent1’s perspective.)

to the heading of Agent22.There are at least four different
modelling options for whether and how this is possible:

• Option 1: Assume that Agent1 can turn on the spot
instantly to face any direction. In this case, the optimal
strategy is to first turn to a heading orthogonal to
that of Agent2, then walk at speed v1 to escape. This
makes Agent1’s initial heading irrelevant and reduces
the model back to the original assumption of orthogonal
velocities.

• Option 2: Assume that Agent1 can only walk in the
direction of their initial heading. They cannot rotate
at all. By substituting v1 in Eq. (3) for its component
orthogonal to Agent2’s heading, v1| sin(θ)|,

descape = v2t1 + (w1 + w2)
v2

v1| sin(θ)| (4)

• Option 3: Assume Agent1 can turn on the spot or twist
during forward travel, where turning takes place at up
to maximum angular velocity θ̇. If θ̇ is very fast then it
will behave like Option 1. If θ̇ is very slow then it will
behave like Option 2. Options 1 and 2 are thus special,
limiting cases of Option 3.

• Option 4. Extending Option 3, further available motions
such as sidesteps and stepping backwards could be
added and optimised.

IV. RESULTS

The present section shows some validations of the ex-
tended model by comparing its predictions to data from

2Moving towards Agent2 is obviously useless. Moving away from Agent2
is useless if v1 < v2, but if v1 > v2 then there are no zones at all as it is
trivial to escape. Any other direction is a linear combination of an optimal
orthogonal escape plus one of these useless directions.



(a) No distraction: t1 = t2 = 1.1s. (b) Both distracted: t1 = t2 = 2.1s.

(c) One distracted: t1 = 1.1s and t2 = 2.1s.

Fig. 4: PTR distance and zone predictions for two walking humans at normal speed with different reaction times.

a selection of previously published empirical studies of
interest. Option 2 is chosen to model the direction of Agent1.
This is because it includes some consideration of the initial
heading, unlike option 1, but without requiring a full solution
of option 3 or 4 which may form extensive future work.

A. Two Walking Humans

We first show that the extended model can numerically re-
produce and explain Hall’s original observations of proxemic
zone sizes for interactions between two walking humans
(unlike the previous study’s [7] with a walking human and
autonomous vehicle). By choosing the realistic parameters:
t1 = t2 = 1.1s, v1 = 1.1m/s, w1 = w2 = 1.19m,
found by optimisation, the extended model then generates
values dcrash = 1.21m and descape = 3.59m, matching
Hall’s data, as shown by the vertical line in Fig. 4a, where
v1 = v2 = 1.1m/s [21]. This result from the extended model
shows a better fit to Hall zones, with an error of less than
1% compared to the previous model’s 4% error [7]. The
zone ratio is found to be RH−H = 3 [7]. This will serve as
a comparator for the following experiments.

B. Distracted Walking Human Interactions

We next model the effect of distraction on the walking
humans – such as attending to headphones, phones, or bill-
boards – by increasing their reaction times in the model by
1s [10]. With both distracted, Fig. 4b shows that their crash
zone size then increases from 1.21m to 2.31m and the escape
zone is also increased from 3.59m to 4.69m, therefore the
zone ratio RH−H reduces to 2.03. With only one distracted,
Fig. 4c shows that the crash zone size increases from 1.21m
to 2.31m but the escape zone starts at 3.59m as in Sect. IV-
A, leading to a smaller trust zone size in this case. The zone
ratio, RH−H ≈ 1.55, is much smaller than the comparator.
These findings are consistent with and explain empirical data
that there is more distance, less trust, and hence less social
interactions between distracted people [37].

C. Walking Human vs Humanoid Robot

We now consider human-robot interactions. Fig. 5a shows
predicted zone sizes for a human walker interacting with two
different humanoids, NAO (∼0.6m tall) and PR2 (∼1.4m
tall). The parameters used are: t1 = 1.1s, t2 = 0.5s,
v1 = 1.1m/s, w1 = 1.19m, w2 = 0.4m. With NAO at speed



(a) Human - Humanoid interaction. (b) Reaction time.

(c) Coefficient of friction.

Fig. 5: Human-robot interactions. (5a) shows the PTR distance and zone predictions for a walking human interacting with
humanoid robots at different speeds. (5b) and (5c) show the implied parameters for an interacting robot.

v2 = 0.3m/s, the model predicts zone sizes: dcrash = 0.15m
and descape = 0.76m. For PR2, having speed v2 = 1.0m/s,
zone sizes are: dcrash = 0.5m and descape = 2.54m.
The sizes found for these human-robot interactions are
much smaller than for human-human interactions, which is
consistent with and matches closely results from previous
empirical experiments with humanoid robots [18], [36], [39].
The zone ratios RH−NAO = 5.06 and RH−PR2 = 4.62 are
much bigger than the comparator from above. This explains
existing empirical results that humans may be more sociable
and friendly with humanoids than human strangers [16], and
that people might not perceive robots as ‘social entities’
having an intimate zone [38].

D. Effects of Different Approach Headings
Fig. 6 shows the predicted escape distance for different

approach headings between Agent1 and Agent2. In the HRI
case, the prediction matches the previous result for a PR2
robot at 90◦ with descape = 2.54m, assuming the following
parameters: t1 = 1.1s, t2 = 0.5s, v1 = 1.1m/s, v2 = 1m/s,
w1 = 1.19m and w2 = 0.4m. In the HHI scenario, the
parameters are as follows: t1 = t2 = 1.1s, v1 = v2 = 1.1m/s,

Fig. 6: Example of predicted escape distance for different
interaction angles between Agent1 and Agent2.



= 1m/s and w1 = w2 = 1.19m, and the prediction at
90◦ closely matches Hall’s zone, with descape = 3.59m.
The results of this extended model match and explain re-
cent empirical data that descape i.e. public zone may be
noncircular [15] while dcrash i.e. personal zone is always
circular [29]. This is because descape is a function of v1
(Eq. 3) and v2 while dcrash depends only on v2 (Eq. 1). The
escape distance goes to infinity as θ → 0◦ and θ → 180◦

because it is impossible for Agent1 to escape if their heading
is constrained to be the same as Agent2’s.

E. Measuring Human Beliefs About Robots

It is possible to measure human’s beliefs about robots’
proxemic behaviour via implied parameters from the model
and experimental data. For example by optimising the reac-
tion time of the robot (Fig. 5b) or its coefficient of friction
(Fig. 5c) to best fit results from human interaction. Assuming
v1 = v2 = 1.1m/s, t1 = 1.5s, w1 + w2 = 2m, µ = 1.0
and g = 9.8m/s2, as in Fig. 5b, the best reaction time for
this case would be t2 ≈ 1.075s if the robot wants to behave
like a human and reproduce Hall’s empirical zones. Similarly
the coefficient of friction is found by keeping the previous
parameters except µ which becomes unknown and by now
setting t1 = t2 = 1.1s. Fig. 5c shows that the best coefficient
of friction for the robot would then be µ = 0.6. This should
enable roboticists to learn and program their robots with the
best parameters, with the possibility to vary the parameters
for different people and in different environments. Current
HRI proxemics results may suggest that humans have this
natural ability to measure a robot’s parameters and thus adapt
their behaviour accordingly.

V. DISCUSSION

The new extensions generalise the unification of proxemics
and trust previously presented in the special case of AV-
pedestrian interactions, to more general HRI interactions.
This was achieved by modifying the assumptions to allow
interactions between agents of similar sizes, approaching
at arbitrary angles, and by removing the need for a goal
location. The new model was validated by successfully fitting
and explaining varied classical recent empirical proxemics
and trust results.

We have here simulated two identical walking agents, but
in the real world it is unlikely that two humans will share the
same exact behavioural parameters. This new model could
help to better understand proxemics and trust dynamics by
simulating agents with differing parameters, without the costs
or hazards associated with human experiments. The model
for two walkers at normal walking speed is also valid for
walkers at higher speeds e.g. 2.2m/s because the form of the
equations scale, though for runners new dynamic equilibrium
terms may be needed to model their stopping distance. In
some cases, such as interactions with large cars, the old
rectangular vehicle geometry may have to be restored and
more complex equations used to compute shape overlaps and
collisions. Future work should replace the use of Option 2
with a full solutions to Option 3 then 4.

Some possible applications for this work include:
Social Robotics: People are ‘the big problem with self-

driving cars’ [6]. AVs are one case of social robots, which
must understand social dynamics and norms, especially in
crowded and mixed pedestrian-vehicle areas, in order to ne-
gotiate for space safely [33]. These negotiations are typically
competitive rather than collaborative, with the aim of each
agent being to get to their own destination quickly rather than
to specifically interact with the other. Other forms of Social
Robotics such as interactions with service and assistive
robots may also benefit from quantitative understanding of
proxemics and trust [17], [22], [24]. Unlike AVs, interaction
with these robots is often cooperative.

Gaming & Extended Reality (XR) seeks to understand hu-
man proxemics in simulations of crowds, both for improving
realism of video games and movie special effects, and for
serious games such as simulations of evacuations, human
locomotion in obstructed environments or group interactions
in immersive virtual environments [1], [9], [31], [32].

Behavioural & Social Sciences: As trustors, humans are
known to be more trusting (and gullible) depending on
personality and environmental factors, and neuroscientific
factors such as oxytocin hormones which may be physically
transmitted through physical proximity [19]. As trustees, hu-
mans also maintain different reputations for trustworthiness,
as studied by social network theorists [2], [41]. Hall zones
are known to change in size across different human cultures
[13]. Future work may need to take account of and replicate
these factors for different human cultures. The Covid-19
pandemic has put a focus on human-human physical social
interactions via the concept of social distancing. This is
the encouragement or enforcement of a minimum proxemic
distance between people when meeting. This requires hard
numerical distance limits to be decided but there is a debate
about what this distance should be. If the distance is too
small, infections may be transmitted. A meta-review [8]
found that 1m distance reduces transmission risk by 86%;
2m by 93%; and 3m by 96%. Others argue that if social
distance is too large, trust will be harder to build [27].
An analogous debate to human-robot trust exists here, with
arguments that physical proximity is sometimes needed to
build human-human trust which may be jeopardized through
social distancing and remote working. For example many
workers are happy to hold technical meetings online but want
to meet physically and closely to make contacts and deals
which require trust.
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