Parton, Andrew, Nachev, Parashkev, Hodgson, Timothy , Mort, Dominic, Thomas, David, Ordidge, Roger, Morgan, Paul S., Jackson, Stephen, Rees, Geraint and Husain, Masud (2007) Role of the human supplementary eye field in the control of saccadic eye movements. Neuropsychologia, 45 (5). pp. 997-1008. ISSN 0028-3932
Full content URL: http://www.sciencedirect.com/science/article/pii/S...
Documents |
|
![]() |
PDF
parton_et_al._2007_Neuropsychologia.pdf - Whole Document Restricted to Repository staff only 849kB |
Item Type: | Article |
---|---|
Item Status: | Live Archive |
Abstract
The precise function of the supplementary eye field (SEF) is poorly understood. Although electrophysiological and functional imaging studies are important for demonstrating when SEF neurones are active, lesion studies are critical to establish the functions for which the SEF is essential.
Here we report a series of investigations performed on an extremely rare individual with a highly focal lesion of the medial frontal cortex. High resolution structural imaging demonstrated that his lesion was confined to the region of the left paracentral sulcus, the anatomical locus of the SEF.
Behavioural testing revealed that the patient was significantly impaired when required to switch between anti- and pro-saccades, when there were conflicting rules governing stimulus–response mappings for saccades. Similarly, the results of an arbitrary stimulus–response associative learning task demonstrated that he was impaired when required to select the appropriate saccade from conflicting eye movement responses, but not for limb
movements on an analogous manual task. When making memory-guided saccadic sequences, the patient demonstrated hypometria, like patients with Parkinson’s disease, but had no significant difficulties in reproducing the order of saccades correctly on a task that emphasized accuracy with
a wide temporal segregation between responses. These findings are consistent with the hypothesis that the SEF plays a key role in implementing control when there is conflict between several, ongoing competing saccadic responses, but not when eye movements need to be made accurately in sequence.
Additional Information: | The precise function of the supplementary eye field (SEF) is poorly understood. Although electrophysiological and functional imaging studies are important for demonstrating when SEF neurones are active, lesion studies are critical to establish the functions for which the SEF is essential. Here we report a series of investigations performed on an extremely rare individual with a highly focal lesion of the medial frontal cortex. High resolution structural imaging demonstrated that his lesion was confined to the region of the left paracentral sulcus, the anatomical locus of the SEF. Behavioural testing revealed that the patient was significantly impaired when required to switch between anti- and pro-saccades, when there were conflicting rules governing stimulus–response mappings for saccades. Similarly, the results of an arbitrary stimulus–response associative learning task demonstrated that he was impaired when required to select the appropriate saccade from conflicting eye movement responses, but not for limb movements on an analogous manual task. When making memory-guided saccadic sequences, the patient demonstrated hypometria, like patients with Parkinson’s disease, but had no significant difficulties in reproducing the order of saccades correctly on a task that emphasized accuracy with a wide temporal segregation between responses. These findings are consistent with the hypothesis that the SEF plays a key role in implementing control when there is conflict between several, ongoing competing saccadic responses, but not when eye movements need to be made accurately in sequence. |
---|---|
Keywords: | Supplementary motor area, Medial frontal cortex, Associative learning, Anti-saccades, Memory-guided saccades |
Subjects: | C Biological Sciences > C800 Psychology C Biological Sciences > C850 Cognitive Psychology C Biological Sciences > C830 Experimental Psychology C Biological Sciences > C860 Neuropsychology |
Divisions: | College of Social Science > School of Psychology |
Related URLs: | |
ID Code: | 4815 |
Deposited On: | 29 Nov 2011 19:18 |
Repository Staff Only: item control page