Hodgson, Tim, Chamberlain, Marcia, Parris, Benjamin , James, Martin, Gutowski, Nicholas, Husain, Masud and Kennard, Christopher (2007) The role of the ventrolateral frontal cortex in inhibitory oculomotor control. Brain, 130 (6). pp. 1525-1537. ISSN 0006-8950, 1460-2156
Full content URL: http://brain.oxfordjournals.org/content/130/6/1525...
Documents |
|
![]()
|
PDF
Hodgson_et_al._2007_Brain.pdf - Whole Document 1MB |
Item Type: | Article |
---|---|
Item Status: | Live Archive |
Abstract
It has been proposed that the inferior/ventrolateral frontal cortex plays a critical role in the inhibitory control of action during cognitive tasks.However, the contribution of this region to the control of eye movements has not been clearly established.Here, we describe the performance of a group of 23 frontal lobe damaged patients in an oculomotor rule switching task for which the association between a centrally presented visual cue and the
direction of a saccade could change from trial to trial. A subset of 16 patients also completed the standard
antisaccade task.Ventrolateral damage was found to be a significant predictor of errors in both tasks. Analysis
of the rate at which patients corrected errors in the rule switching task also revealed an important dissociation
between left and right hemisphere damaged patients.Whilst patients with left ventrolateral damage usually corrected
response errors with secondary saccades, those with right hemisphere lesions often failed to do so.
The results suggest that the inferior frontal cortex forms part of a wider frontal network mediating inhibitory
control over stimulus elicited eye movements. The critical role played by the right ventrolateral region in
cognitive tasks may arise due to an additional functional specialization for the monitoring and updating of task rules.
Additional Information: | It has been proposed that the inferior/ventrolateral frontal cortex plays a critical role in the inhibitory control of action during cognitive tasks.However, the contribution of this region to the control of eye movements has not been clearly established.Here, we describe the performance of a group of 23 frontal lobe damaged patients in an oculomotor rule switching task for which the association between a centrally presented visual cue and the direction of a saccade could change from trial to trial. A subset of 16 patients also completed the standard antisaccade task.Ventrolateral damage was found to be a significant predictor of errors in both tasks. Analysis of the rate at which patients corrected errors in the rule switching task also revealed an important dissociation between left and right hemisphere damaged patients.Whilst patients with left ventrolateral damage usually corrected response errors with secondary saccades, those with right hemisphere lesions often failed to do so. The results suggest that the inferior frontal cortex forms part of a wider frontal network mediating inhibitory control over stimulus elicited eye movements. The critical role played by the right ventrolateral region in cognitive tasks may arise due to an additional functional specialization for the monitoring and updating of task rules. |
---|---|
Keywords: | executive control, eye tracking, antisaccades, task switching, frontal lobe |
Subjects: | C Biological Sciences > C800 Psychology C Biological Sciences > C850 Cognitive Psychology C Biological Sciences > C830 Experimental Psychology C Biological Sciences > C860 Neuropsychology |
Divisions: | College of Social Science > School of Psychology |
Related URLs: | |
ID Code: | 4805 |
Deposited On: | 28 Nov 2011 18:28 |
Repository Staff Only: item control page