Coleman, Daniel J., Schuerch, Mark, Temmerman, Stijn , Guntenspergen, Glenn, Smith, Christopher G. and Kirwan, Matthew L. (2022) Reconciling models and measurements of marsh vulnerability to sea level rise. Limnology and Oceanography Letters . ISSN 2378-2242
Full content URL: https://doi.org/10.1002/lol2.10230
Documents |
|
|
PDF
Coleman_Synthesis_OneDoc.pdf - Whole Document Available under License Creative Commons Attribution 4.0 International. 2MB |
Item Type: | Article |
---|---|
Item Status: | Live Archive |
Abstract
Tidal marsh survival in the face of sea level rise (SLR) and declining sediment supply often depends on the ability of marshes to build soil vertically. However, numerical models typically predict survival under rates of SLR that far exceed field-based measurements of vertical accretion. Here, we combine novel measurements from seven U.S. Atlantic Coast marshes and data from 70 additional marshes from around the world to illustrate that—over continental scales—70% of variability in marsh accretion rates can be explained by suspended sediment concentratin (SSC) and spring tidal range (TR). Apparent discrepancies between models and measurements can be explained by differing responses in high marshes and low marshes, the latter of which accretes faster for a given SSC and TR. Together these results help bridge the gap between models and measurements, and reinforce the paradigm that sediment supply is the key determinant of wetland vulnerability at continental scales.
Keywords: | Suspended Sediment Concentration, Salt Marsh, Sea Level Rise, Accretion |
---|---|
Subjects: | F Physical Sciences > F840 Physical Geography |
Divisions: | College of Science > School of Geography |
ID Code: | 47757 |
Deposited On: | 20 Jan 2022 15:37 |
Repository Staff Only: item control page