Flagellate Underwater Robotics at Macroscale: Design, Modeling, and Characterization

Armanini, Costanza, Farman, Madiha, Calisti, Marcello , Giorgio-Serchi, Francesco, Stefanini, Cesare and Renda, Federico (2021) Flagellate Underwater Robotics at Macroscale: Design, Modeling, and Characterization. IEEE Transactions on Robotics . pp. 1-17. ISSN 1552-3098

Full content URL: https://ieeexplore.ieee.org/abstract/document/9486...

Flagellate Underwater Robotics at Macroscale: Design, Modeling, and Characterization
Published Open Access manuscript
Flagellate_Underwater_Robotics_at_Macroscale_Design_Modeling_and_Characterization.pdf - Whole Document
Available under License Creative Commons Attribution 4.0 International.

Item Type:Article
Item Status:Live Archive


Prokaryotic flagellum is considered as the only known example of a biological “wheel,” a system capable of converting the action of rotatory actuator into a continuous propulsive force. For this reason, flagella are an interesting case study in soft robotics and they represent an appealing source of inspiration for the design of underwater robots. A great number of flagellum-inspired devices exists, but these are all characterized by a size ranging in the micrometer scale and mostly realized with rigid materials. Here, we present the design and development of a novel generation of macroscale underwater propellers that draw their inspiration from flagellated organisms. Through a simple rotatory actuation and exploiting the capability of the soft material to store energy when interacting with the surrounding fluid, the propellers attain different helical shapes that generate a propulsive thrust. A theoretical model is presented, accurately describing and predicting the kinematic and the propulsive capabilities of the proposed solution. Different experimental trials are presented to validate the accuracy of the model and to investigate the performance of the proposed design. Finally, an underwater robot prototype propelled by four flagellar modules is presented.

Keywords:Robots, Strain, Propulsion, Propellers, Unmanned underwater vehicles, Shape, Prototypes
Subjects:H Engineering > H671 Robotics
Divisions:College of Science > Lincoln Institute for Agri-Food Technology
ID Code:46191
Deposited On:24 Aug 2021 15:04

Repository Staff Only: item control page