Novel quartz crystal microbalance based biosensor for detection of oral epithelial cell--microparticle interaction in real-time

Elsom, Jacqueline, Lethem, Michael I, Rees, Gareth D and Hunter, A Christy (2008) Novel quartz crystal microbalance based biosensor for detection of oral epithelial cell--microparticle interaction in real-time. Biosensors and Bioelectronics, 23 (8). pp. 1259-1265. ISSN 0956-5663

Full content URL: https://doi.org/10.1016/j.bios.2007.11.020

Full text not available from this repository.

Item Type:Article
Item Status:Live Archive

Abstract

Recent applications of quartz crystal resonant sensor technology to monitor cell adhesion and specific ligand interaction processes has triggered the development of a new category of quartz crystal microbalance (QCM) based biosensors. In this study human oral epithelial cells (H376) were cultured on quartz sensors and their response to microspheres investigated in situ using the QCM technique. The results demonstrated that this novel biosensor was able to follow cell–microsphere interactions in real-time and under conditions of flow as would occur in the oral cavity. Unique frequency profiles generated in response to the microspheres were postulated to be due to phases of mass addition and altered cellular rigidity. Supporting microscopic evidence demonstrated that the unique frequency responses obtained to these interactions were in part due to binding between the cell surface and the microspheres. Furthermore, a cellular uptake process, in response to microsphere loading was identified and this, by influencing the rigidity of the cellular cytoskeleton, was also detectable through the frequency responses obtained.

Divisions:College of Science > School of Pharmacy
ID Code:45435
Deposited On:13 Jul 2021 13:03

Repository Staff Only: item control page