In situ fabrication of electrically conducting bacterial cellulose-polyaniline-titanium-dioxide composites with the immobilization of Shewanella xiamenensis and its application as bioanode in microbial fuel cell

Duy H. Truonga,b, Mai S. Damb, Erika Bujnaa, Judit Rezessy-Szaboa, Csilla Farkasa, Vu Ngoc Ha Via, Olivia Csernusaa, Vuong D. Nguyenb, Nicholas Gathergoodc, László Friedrichd, Mohamed Hafidie,f, Vijai Kumar Guptag,* and Quang D. Nguyena,*

aResearch Centre for Bioengineering and Process Engineering, Faculty of Food Science, Szent István University, H-1118 Budapest, Ménési út 45. Hungary.

bInstitute of Food Technology and Biotechnology, Industrial University of Ho Chi Minh City, No. 12 Nguyen Van Bao, Ward 4, Go Vap District, Ho Chi Minh City, Viet Nam.

cSchool of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire LN6 7DL, UK.

dResearch Centre for Food Technology, Faculty of Food Science, Szent István University, H-1118 Budapest, Ménési út 45. Hungary.

eLaboratory of Microbial Biotechnologies, Agrosciences and Environment, Faculty of Sciences Semlalia, Cadi Ayyad University Marrakech, Morocco.

fAgrobiosciences Program, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco

gAgroBioSciences (AgBS) and Chemical & Biochemical Sciences (CBS), University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, 43150, Benguerir – Morocco

* Corresponding authors: E-mail: Nguyen.Duc.Quang@etk.szie.hu (NDQ), vijaifzd@gmail.com (V.K.G.)
Abstract

The electrical conducting bacterial cellulose/polyaniline (BC/PANI) based composites were synthesized over in situ polymerization of aniline onto BC with ammonium-persulphate (APS) and chloride hexahydrate of iron (III) as oxidant (FeCl$_3$.6H$_2$O). The conductivity of synthesized BC was improved in the presence of a titanium-dioxide (TiO$_2$) coating. The conductivity of BC/PANI/TiO$_2$/APS was 3.7 S/m compare 2.9 S/m and 2.67 S/m with BC/PANI/TiO$_2$/FeCl$_3$.6H$_2$O and BC/PANI/APS, respectively. Moreover, when using the BC/PANI/TiO$_2$/APS as anode with the immobilization of Shewanella xiamenensis, an improved efficiency of microbial fuel cell was observed. The power-density maximized 38.89 W/m3 with BC/PANI/TiO$_2$/APS anode compared with 2.57 W/m3 in the case of bare BC anode. These results will serve good base for the development of compact microbial fuel cell with high power density.

Keywords: bacteria cellulose/polyaniline/titanium-dioxide; Shewanella xiamenensis; microbial fuel cells; hydrogel bioanode; immobilization

1 Introduction

In recent years, alternative renewable energy systems have elicited great interest. Microbial fuel cell (MFC) can convert organic (biological) matter directly into energy [1-4], thus they are classified as renewable energy systems [5, 6]. In MFC, microorganisms biocatalyze the oxidation of organic matter and release electrons into the anodic electrode. Then, these electrons are transported to the cathodic electrode via the external circuit, resulting in a current generated. The organic compounds play a primary role as an electron source in microbial processes [7-10]. Many factors affect performance MFC such as microorganisms, substrate, mediator, electrode material etc. [11-13]. Electrodes are integral parts because of their key electron transfer role and research leading to enhanced efficiency of MFC [14] is
worthwhile. Electrode materials should have good electrical conductivity, biocompatibility, chemical stability, large surface area and mechanical strength [15-17]. Carbon materials with their high electric conductivity and stability are usually used in anode fabrication. However, besides carbon materials, other materials have been studied and used as anode materials in MFC [18].

Cellulose is a well-known non-toxic and low-cost polymer. It is also a naturally biocompatible polymer and has been used in many fields [19, 20]. Bacterial cellulose (BC) produced by fermentation of Acetobacter under static or agitated conditions and it is also classed as an exopolysaccharide. It has some outstanding characteristics compared to plant cellulose such as ultrafine network structure, higher purity, water retention capability, porosity, biological interaction and mechanical strength [21-23]. Chemically, BC is linear polysaccharide chains having glucose units linked together by β(1,4) glycosidic bounds, and intermolecular by hydrogen bonds. Acetobacter bacteria is considered as a strictly aerobic model bacteria species with high BC production capacity [24] and hydrogel cellulose will be formatted on the top surface of the liquid culture [25].

In recent years, conducting polymer-cellulose composites received significant interest due to high potentials in industrial applications, including as batteries, sensors and electrical devices. Polyaniline (PANI) has played a great role in energy storage, due to its controllable electrical conductivity, facile synthesis and availability as a low-cost material [26]. Besides other types of scaffolds based on cellulose (e.g. plant cellulose, cellulose derivatives and microcrystalline cellulose), bacterial cellulose membrane is an attractive cellulose scaffold for the preparation of conducting polymer-cellulose [23]. BC coated with conducting polymers is now well known as a new promising polymer [27]. BC/PANI is a typical example for BC combination and conducting polymer with the integration of several
properties such as tensile strength, biocompatibility, high surface areas and electrical conductivity [27, 28]. In addition, Wang et al. [23] have fabricated BC/PANI material with high electrical conductivity. In many types of research, the PANI coated anode was successfully used in the MFC to enhance power density [16, 29, 30]. Furthermore, the modification of PANI polymers with the supplement of titanium dioxide have significantly enhanced the current densities of MFC [31].

The main focus of the present study is in situ fabrication of electrically conducting bacterial cellulose/polyaniline/titanium-dioxide composites with the immobilization of Shewanella xiamenensis and its electrical performance in the microbial fuel cell.

2 Materials and methods

2.1 Microbial culture conditions

Shewanella xiamenensis DSMZ 22215 strain was obtained and maintained accordingly to Szöllősi et al. [6]. The bacterial cells from 24 h cultures in Luria-Bertani (LB) at 180 rpm were separated by centrifuge 10,000 rpm and used for immobilization.

2.2 Preparation of BC hydrogel

Acetobacter xylinum ATCC 23768 strain was used for bacteria cellulose production. Bacteria were cultivated on Schramm-Hestrin (SH) medium [32]. A single Acetobacter xylinum colony on SH agar medium was transferred into liquid SH medium. The cellulose sheets were shaped on the top-surface of the culture broth after 7 days at 28 °C. The cellulose sheets with 0.5 cm thickness were removed and washed with deionized water, sodium dodecyl sulphate 2% and purified in NaOH 0.1N [33]. They were cut into 2 x 3 cm pieces
and sterilized before they were used for the fabrication of electrically conducting composites and cell immobilization.

2.3 Development of electrically conducting BC/PANI, BC/PANI/TiO₂ and bare BC composites

BC/PANI composites were made in situ oxidative polymerization of aniline by using ammonium persulphate (APS) called BC/PANI/APS or iron (III) chloride hexahydrate (FeCl₃.6H₂O) called BC/PANI/FeCl₃.6H₂O as oxidant. For the preparation of BC/PANI composites, BC hydrogel membranes with 2 x 3 x 0.5 cm were cut and immersed in distilled water (1:10 w/v) and then aniline (Merck, Hungary) were added. In the first ultra-sonification process, the Clifton MU-8 sonicator at 40 kHz and 30 W performance was used for 2h; hydrogen bonding was formed allowing the monomer to assemble onto the BC surface. In the next step, the oxidant (ammonium-persulphate, Reanal, Hungary) or iron (III) chloride hexahydrate) was mixed. The BC was synthesized in the 2nd ultra-sonication (40 kHz, 30 W) condition for 2h in the ice. After polymerization was started the colour of the solution changed to dark green from ivory in an overnight reaction. In the case of fabrication of electrically conducting BC/PANI/TiO₂ composites, TiO₂ (Sigma Aldrich) was mixed simultaneously with oxidants. For comparison, bare BC without aniline oxidative polymerization was used.

2.4 Immobilization of Shewanella xiamenensis into bare BC, BC/PANI and BC/PANI/TiO₂ using adsorption method

The Shewanella xiamenensis cells in LB broth medium after 24 hours at 30 °C in incubator shaker 180 rpm were separated using the centrifugal method and suspended in isotonic saline phosphate-buffer (PBS, Sigma-Aldrich) to get cell number of 10⁹ CFU/ml. Bare BC,
BC/PANI and BC/PANI/TiO₂ composite membranes were incubated in *Shewanella xiamenensis* suspension at 30°C with shaking at 200 rpm from 12 – 96 hours. After that, composite membranes were washed 3 times with PBS to remove free cells.

2.5 Construction batch and a semi-continuous batch of MFC

Dual-chamber MFC was prepared with a similar volume of anode and cathode chamber (24 mL) and a Nafion 117 proton-exchange membrane was applied for separation of two chambers. The cathode chamber was filled with solution of 0.5 M of Sorensen phosphate buffer (pH = 7) contained 0.1 M of potassium-hexaferrocyanate. Bare BC, BC/PANI and BC/PANI/TiO₂ with immobilized bacteria cells act as an anode electrode and anode chamber was filled with modified LB medium that contains 10g/L glucose without agar. Graphite sheets with surface area 6 cm² as cathode were placed in the respective chambers. Generally, the external resistance with capacity of 500 Ω in parallel with a digital multimeter was used to connect the electrodes (Figure 1). Both batch and semi-continuous operation modes used for investigation of electric performance of MFC.

The voltage was continuously measured in the external resistance (500 Ω). The Ohm’s law (I=V/R) was used to calculate the current (I) in MFC based on the electric voltage (V) and the external resistance (R). While the current density (P) of MFC was calculated according to equation P = I.V, whereas the power density (Pd) was obtained based on Pd = P/d, where d is the volume of bare BC or synthesized BC.

2.6 Bare BC, BC/PANI and BC/PANI/TiO₂ Characterization

2.6.1 Conductivity measurements
BC/PANI, BC/PANI/TiO₂ conductivity was analyzed with four-point probe technique. According to the four-point method, electrical resistance and electrical current were measured by a digital multimeter VC-830 (Voltcraft, Germany).

2.6.2 FT-IR
The infrared spectra of newly fabricated bare BC, BC/PANI and BC/PANI/TiO₂ composites were obtained on a JASCO-4700 infrared spectrometer using KBr pellets with a wavelength range of 4000 to 400 cm⁻¹.

2.6.3 Scanning electron microscope
Scanning electron microscope (SEM, JSM-6480LV-JED 2300, Jeol, Japan) was used to analyze the structure of the surface of bare BC, BC/PANI and BC/PANI/TiO₂.

2.6.4 Electrochemical measurements
Electrochemical characterization of bare BC and BC/PANI was performed by cyclic voltammetry (CV) techniques. Cyclic voltammetry (CV) was conducted using the open-source potentiostat (IO Rodeo, USA) with saturated calomel electrode (SCE) and platinum wire.

2.6.5 Cell number determination of immobilized Shewanella xiamenensis
The cell number of immobilized Shewanella xiamenensis in bare BC, BC/PANI and BC/PANI/TiO₂ were determined by plate count method on Marine agar (Scharlau, Spain). After immobilization of Shewanella xiamenensis cell, bare BC and synthesized BC were washed 3 times
with PBS and digested with the cellulase enzyme (Sigma, Aldrich). The grown colonies were counted after incubation for 24 hours, and the number of colonies was determined.

3 Results and discussions

3.1 Fabrication of electrically conducting composites from bacteria cellulose

The BC/PANI electrical conductivity composites was strongly dependent upon reaction conditions. The effect of preparation conditions (aniline concentration and FeCl₃.6H₂O, ammonium persulfate) on the BC/PANI nanocomposites conductivity was investigated using the Central Composite Design (CCD) of response surface method (Figure 2). The BC/PANI electrical conductivity increased when the aniline, FeCl₃.6H₂O and ammonium persulfate concentration increased. The maximum BC/PANI composites conductivity could be attained when prepared as follows: concentration of aniline 0.2 mol/L; molar ratio of ammonium-persulfate:aniline 1.2:1; molar ratio of FeCl₃.6H₂O:aniline 1.5:1; reaction temperature 0 – 5 °C; polymerization reaction time 14 hours for the completion of polymerization. The conductivity of BC/PANI/APS composites obtained was 2.67 S/m and with BC/PANI/FeCl₃.6H₂O composites 2.29 S/m.

Figure 3 illustrates the effect of TiO₂ concentration on the conductivity of BC/PANI/TiO₂ composites. The maximum conductivity of BC/PANI/APS was 3.7 S/m when prepared at 0.3 mol/L TiO₂ concentration and for BC/PANI/FeCl₃.6H₂O was 2.9 S/m with 0.2 mol/L TiO₂.

Infrared spectra of bare BC and synthesized BC composites were measured by FT-IR to evaluate chemical structure (Figure 4). The FT-IR spectrum of pure BC presented broad absorption band of 3200 - 3550 cm⁻¹, assigned H-bond for -OH [23, 34-36]. The peak at 2895 cm⁻¹ showed the aliphatic C-H stretching vibration. In the case of BC/PANI
composite, the stretching vibration of quinoid and benzenoid rings structure was at peaks 1556 and 1470 cm$^{-1}$, respectively. C-O-C stretching vibrations of the pyranose skeletal ring were at the range of 1060-1030 cm$^{-1}$ [23]. The FT-IR spectra of BC/PANI/TiO$_2$ composite showed an absorption band at 637 cm$^{-1}$. This feature supports our claims that an interaction between TiO$_2$ and the hydroxyl group of cellulose occurred [37] and that the BC was sufficiently coated by PANI and TiO$_2$.

The surface characteristics of bare BC, BC/PANI and BC/PANI/TiO$_2$ were evaluated by SEM images at x1000 magnification (Figure 5). The morphologies are particularly different between bare BC and BC/PANI. In the case of bare BC, a smooth surface with featureless morphology was observed (Figure 5a). In comparison, the surface of BC/PANI was rough and covered with materials (Figure 5b-d). The surface structure of BC/PANI/TiO$_2$ showed the particles entangled with cellulose and PANI particles, present a much denser structure (Figure 5c, d). This result showed that the BC coating adhered to the cellulose and formed a continuous conducting network for the high electrical conductivity [23, 38, 39].

3.2 Electrical performance of the bare BC and synthesized BC bioanodes

3.2.1 Immobilization *Shewanella xiamenensis* to form the bioanode

Shewanella xiamenensis was immobilized in bare BC, BC/PANI and BC/PANI/TiO$_2$ composites. Figure 6 shows effect of incubation conditions on the immobilized cell numbers. In the case of bare BC, the cell number increased until 36 hours whereupon a stable value was observed for a further 36 hours (1.2×10^6 CFU/g). After 48 hours of immobilization microorganisms on all BC/PANI and BC/PANI/TiO$_2$ electrodes had reached their maximum cell numbers and were stable for a further 24h. The maximum cell number of BC/PANI/TiO$_2$ using ammonium persulphate and FeCl$_3$.6H$_2$O as oxidant was
1.2 x 10^6 CFU/g and 1.1 x 10^6 CFU/g, respectively. When the immobilization process was completed, the bare BC, BC/PANI, BC/PANI/TiO_2 were covered by sodium alginate film. The ability to immobilize microorganisms into bare BC has been previously described [33].

3.2.2 Electrical performance of different bioanodes

Five types of bioanodes namely bare BC, BC/PANI/FeCl_3.6H_2O, BC/PANI/APS, BC/PANI/TiO_2/FeCl_3.6H_2O and BC/PANI/TiO_2/APS with the immobilization *Shewanella xiamensis* were used in different MFC systems MFC1, MFC2, MFC3, MFC4, MFC5, respectively. The membrane was 2x3x0.5 cm and the immobilization cell numbers were counted to be in the range 1.1 – 1.2 x 10^6 CFU. The voltage in MFC was counted with 500 Ohm and the MFC was operated until the electric voltage outputted to near zero (out of substrate). The power density of all MFC system is illustrated in Figure 7.

The power density rapidly increased in MFC with BC/PANI/TiO_2 anode (MFC4 and MFC5) compared with the control system bare BC (MFC1). The power density of MFC5 reached the maximum value (38.89 W/m^3) after 8h of operation and maintained this power density for 28h. The power density of MFC5 was 15-fold higher than MFC1 with bare BC anode (2.57 W/m^3). MFC1 got a maximum value (7.09 W/m^3) after 16 hours of operation. In the case of BC/PANI/TiO_2 (MFC4) using FeCl_3.6H_2O as an oxidant – the power density value peaked around 23.95 - 29.30 W/m^3, lower than MFC5. MFC2 and MFC3 also showed lower power density values in comparison with MFC4 and MFC5. The combination of BC/PANI and TiO_2 contributed to the increase in power density. Taşkan et al. [40] used a Ti-TiO_2 electrode to enhance the electricity generation in MFC and their research showed that the current density achieved 15-fold higher than the carbon-based electrode. Also, in 2013, Wu et al. [41] successfully fabricated the carbon nanotube-gold-titanium-dioxide
(CNT/Au/TiO$_2$) that has nanostructure, and it was applied as modified anode in the MFC. They reported that the power density was 3-fold higher than the bare carbon paper electrode. Indeed, due to the number of technological and economical advantages such as large in surface area, low cost and high conductivity, the conducting polymers can serve very good materials for formation of anodic electrode in MFC. For example, Szöllősi et al. [6] successfully fabricated an alginate/PANI/TiO$_2$/graphite composite for MFC application and they reported that the MFC with this anode has significantly high electrical conductivity and power density as well as exhibited good stability. Li et al. [42] also used modified carbon felt electrodes with four classes of conducting polymers namely polyaniline, poly(aniline-co-aminophenol), poly(aniline-co-2,4-diaminophenol) (PANDAP) and poly(aniline-1,8 diaminonaphthalene) (PANDAN). Their method enhanced the power densities by 300% and 180% for abiotic cathodes and biocathodes, respectively, compared to unmodified carbon felts electrodes.

To consider the effectiveness of BC/PANI/TiO$_2$/APS with immobilization of *Shewanella xiamenensis*, semi-continuous batch was set-up after voltage output of MFC5 decreased. The anode chamber of MFC5 was fed with fresh substrate and the performance is shown in Figure 8. Maximum power density of each cycle peaked around 35.81 W/m3 after 30th hours. In this result, MFC still maintains the ability to produce electricity if the nutritional medium is met. The cycle time of MFC takes about 70-72 hours from the fresh feeding medium to exhaust of glucose. Several authors also reported the increase in power density of MFC using modified anode with supplement of polyaniline (Table 1). Additionally, in the case of modified anode coated by TiO$_2$, the power output of the MFC using BC/PANI/TiO$_2$ was higher (2.26-fold) and (3.94-fold) than that of the graphite
sheets/polyaniline/graphene/TiO₂ and alginate/polyaniline/TiO₂/graphite, respectively [6, 45].

The MFC performance is typically predictable by the polarization curve [43]. The polarization curve of MFC5 was measured and shown in Figure 9. The maximum power density of MFC5 system was 40.66 W/m³ with a current density of 116.72 A/m³. The power overshoot of MFC5 was absent. It can be explained by high anodic capacitance, and high density of cells in the anode. Generally, in the MFC, the power overshoot may be caused by the immature biofilm on the anode electrode or the lack of anodic capacitance. These results clearly substantiate the suitability of using BC/PANI/TiO₂/APS as anode for MFC.

Cyclic voltammetry (CV) is extensively used to consider the extracellular electron transfer processes in MFC. This method was used to investigate the catalytic and capacitive behavior of different bioelectrodes [43]. The CV response of MFC5 with BC/PANI/TiO₂/APS composite anode was measured. The redox peaks were found for the systems of BC/PANI/TiO₂ anode composite (Figure 10). The oxidation and reduction peaks were 0.2V and -0.07 V, respectively. This result affirmed that c-type cytochromes were involved in the electron transfer process [44] and successful fabrication of BC/PANI/TiO₂ was confirmed.

4 Conclusion

The electrical conducting BC/PANI composites were successfully fabricated by in situ polymerization of self-assembled aniline onto BC with ammonium-persulphate or FeCl₃.6H₂O as oxidant. The reaction conditions such as aniline concentration and concentration of oxidant have strength effects on the conductivity of conducting polymers. In addition, the use of ammonium-persulphate as an oxidant showed significant enhancement in increasing conductivity of BC/PANI compared with using FeCl₃.6H₂O. The
fabrication of BC/PANI composites with a covering of TiO$_2$ were successful with a significant increase in conductivity. The BC/PANI/TiO$_2$ anode system was suitable for improving the efficiency of the MFC. Moreover, the fabrication of BC/PANI and BC/PANI/TiO$_2$ composites with the immobilization bacteria cell and as a new bio-anode was developed. By applying the BC/PANI/TiO$_2$/APS bio-anode, the maximum power density of MFC was about 15-fold higher than that of bare BC. The BC/PANI and BC/PANI/TiO$_2$ bio-anode improved the transport of electron from bacterium cells to anode. Furthermore, this study provided an economical anode material because of its reusability and cheapness.

Author Contributions
Q.D.N. and V.K.G. developed the concept and led the design of experiments as well as correction of the manuscript; D.H.T., M.S.D., V.N.H.V., Cs.F., J.M.R-Sz, E.B., O.Cs., V.D.N., L.F., designed and carried out experiments, collected data as well as wrote the draft of the manuscript; N.G. and M.H. were scientific advisors for concept development and experimental design as well as correction of manuscript.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
This work is supported by the New Széchényi Plant Project No. EFOP-3.6.3.-VEKOP-16-2017-00005 as well as by Doctoral School of Food Science, Szent Istvan University, and by the Higher Education Institutional Excellence Program (Project No. 20430-3/2018/FEKUTSTRAT) awarded by the Ministry of Human Capacities. VKG and NG
would like to acknowledge the EU 7th Framework Programme for research, technological development, and demonstration activities under grant agreement No. 621364 (TUTIC-Green). QDN received Bolyai Research Grant from the Hungarian Academy of Sciences.
References

Table 1. The power density of different polyaniline modified anode materials in the MFC

<table>
<thead>
<tr>
<th>Anode material</th>
<th>MFC contruction</th>
<th>Bacteria</th>
<th>Substrate</th>
<th>P_{max} (W/m3)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon nanotube/polyaniline</td>
<td>-</td>
<td>E. Coli</td>
<td>Glucose</td>
<td>42*</td>
<td>[46]</td>
</tr>
<tr>
<td>Carbon cloth/polyaniline</td>
<td>DCMFC</td>
<td>-</td>
<td>Sodium acetate</td>
<td>5.16</td>
<td>[29]</td>
</tr>
<tr>
<td>Chitosan-nitrogen/carbon nanotubes/polyaniline</td>
<td>DCMFC</td>
<td>-</td>
<td>Sodium acetate</td>
<td>4.2</td>
<td>[47]</td>
</tr>
<tr>
<td>Graphite sheets/polyaniline/graphene/TiO$_2$</td>
<td>DCMFC</td>
<td>Shewanella oneidensis</td>
<td>LB</td>
<td>79.3*</td>
<td>[45]</td>
</tr>
<tr>
<td>Bacteria cellulose/polyaniline</td>
<td>DCMFC</td>
<td>Shewanella xiamenensis</td>
<td>Glucose</td>
<td>29.31 (137.4*)</td>
<td>This work</td>
</tr>
<tr>
<td>Bacteria cellulose/polyaniline/TiO$_2$</td>
<td>DCMFC</td>
<td>Shewanella xiamenensis</td>
<td>Glucose</td>
<td>38.89 (179.4*)</td>
<td>This work</td>
</tr>
</tbody>
</table>

* mW/m2; DCMFC: dual-chamber MFC
Figure captions

Figure 1. Schematic construction of dual-chamber MFC using BC, BC/PANI, BC/PANI/TiO₂ composites as anode

Figure 2. Effect of reaction conditions (aniline concentration and ammonium persulfate, FeCl₃.6H₂O) on the conductivity of BC/PANI composites: (a) BC/PANI/APS; (b) BC/PANI/FeCl₃.6H₂O

Figure 3. Effect of titanium dioxide concentration in fabrication of BC/PANI/TiO₂ composites process on its conductivity: (a) BC/PANI/APS; (b) BC/PANI/FeCl₃.6H₂O

Figure 4. FT-IR spectra of bare BC, BC/PANI and BC/PANI/TiO₂ using ammonium persulfate as oxidant

Figure 5. SEM images of (a) Bare BC, (b) BC/PANI/APS, (c) BC/PANI/TiO₂/APS, (d) BC/PANI/TiO₂/FeCl₃.6H₂O

Figure 6. The number of immobilized Shewanella xiamenensis cells (CFU/g BC) in bare BC, BC/PANI and BC/PANI/TiO₂ by adsorption-incubation method

Figure 7. The power density of MFC with different synthesized BC anode in a simple batch

Figure 8. The power density of MFC with BC/PANI/TiO₂/APS anode composite in semi-continuous batch (“↓” indicate the new feeding cycle)

Figure 9. Polarization curve of MFC with BC/PANI/TiO₂/APS anode composite

Figure 10. Cyclic voltammogram for MFC using BC/PANI/TiO₂/APS anode with potential (vs SCE)
Figure 1
Figure 2
Figure 3
Figure 6

A graph showing the cell number (CFU/g) over time (h) for different samples. The x-axis represents time in hours, ranging from 12 to 72, and the y-axis represents cell number (CFU/g), ranging from 0 to 1.4×10^6. The graph includes error bars for each data point. The legend indicates the following samples:

- Bare BC
- BC/PANI-(FeCl₃.6H₂O)
- BC/PANI-(APS)
- BC/PANI/TiO₂-(FeCl₃.6H₂O)
- BC/PANI/TiO₂-(APS)
Figure 8

![Graph showing power density over time](image)

- X-axis: Time (h)
- Y-axis: Power density (W/m²)
Figure 9

![Graph showing voltage and power density vs. current density.](image-url)