Salganik, Matthew J., Lundberg, Ian, Kindel, Alexander T. , Ahearn, Caitlin E., Al-Ghoneim, Khaled, Almaatouq, Abdullah, Altschul, Drew M., Brand, Jennie E., Carnegie, Nicole Bohme, Compton, Ryan James, Datta, Debanjan, Davidson, Thomas, Filippova, Anna, Gilroy, Connor, Goode, Brian J., Jahani, Eaman, Kashyap, Ridhi, Kirchner, Antje, McKay, Stephen, Morgan, Allison C., Pentland, Alex, Polimis, Kivan, Raes, Louis, Rigobon, Daniel E., Roberts, Claudia V., Stanescu, Diana M., Suhara, Yoshihiko, Usmani, Adaner, Wang, Erik H., Adem, Muna, Alhajri, Abdulla, AlShebli, Bedoor, Amin, Redwane, Amos, Ryan B., Argyle, Lisa P., Baer-Bositis, Livia, Büchi, Moritz, Chung, Bo-Ryehn, Eggert, William, Faletto, Gregory, Fan, Zhilin, Freese, Jeremy, Gadgil, Tejomay, Gagné, Josh, Gao, Yue, Halpern-Manners, Andrew, Hashim, Sonia P., Hausen, Sonia, He, Guanhua, Higuera, Kimberly, Hogan, Bernie, Horwitz, Ilana M., Hummel, Lisa M., Jain, Naman, Jin, Kun, Jurgens, David, Kaminski, Patrick, Karapetyan, Areg, Kim, E. H., Leizman, Ben, Liu, Naijia, Möser, Malte, Mack, Andrew E., Mahajan, Mayank, Mandell, Noah, Marahrens, Helge, Mercado-Garcia, Diana, Mocz, Viola, Mueller-Gastell, Katariina, Musse, Ahmed, Niu, Qiankun, Nowak, William, Omidvar, Hamidreza, Or, Andrew, Ouyang, Karen, Pinto, Katy M., Porter, Ethan, Porter, Kristin E., Qian, Crystal, Rauf, Tamkinat, Sargsyan, Anahit, Schaffner, Thomas, Schnabel, Landon, Schonfeld, Bryan, Sender, Ben, Tang, Jonathan D., Tsurkov, Emma, van Loon, Austin, Varol, Onur, Wang, Xiafei, Wang, Zhi, Wang, Julia, Wang, Flora, Weissman, Samantha, Whitaker, Kirstie, Wolters, Maria K., Woon, Wei Lee, Wu, James, Wu, Catherine, Yang, Kengran, Yin, Jingwen, Zhao, Bingyu, Zhu, Chenyun, Brooks-Gunn, Jeanne, Engelhardt, Barbara E., Hardt, Moritz, Knox, Dean, Levy, Karen, Narayanan, Arvind, Stewart, Brandon M., Watts, Duncan J. and McLanahan, Sara (2020) Measuring the predictability of life outcomes with a scientific mass collaboration. Proceedings of the National Academy of Sciences, 117 (15). pp. 8398-8403. ISSN 0027-8424
Full content URL: https://doi.org/10.1073/pnas.1915006117
Documents |
|
|
PDF
__network.uni_staff_S1_cjoyner_Downloads_8398.full.pdf - Whole Document Available under License Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International. 1MB |
Item Type: | Article |
---|---|
Item Status: | Live Archive |
Abstract
How predictable are life trajectories? We investigated this question with a scientific mass collaboration using the common task method; 160 teams built predictive models for six life outcomes using data from the Fragile Families and Child Wellbeing Study, a high-quality birth cohort study. Despite using a rich dataset and applying machine-learning methods optimized for prediction, the best predictions were not very accurate and were only slightly better than those from a simple benchmark model. Within each outcome, prediction error was strongly associated with the family being predicted and weakly associated with the technique used to generate the prediction. Overall, these results suggest practical limits to the predictability of life outcomes in some settings and illustrate the value of mass collaborations in the social sciences.
Keywords: | life course, machine learning, prediction, mass collaboration |
---|---|
Subjects: | L Social studies > L310 Applied Sociology |
Divisions: | College of Social Science > School of Social & Political Sciences |
ID Code: | 41219 |
Deposited On: | 22 Jun 2020 15:52 |
Repository Staff Only: item control page