On reducibility and ergodicity of population projection matrix models

Stott, Iain, Townley, Stuart, Carslake, David and Hodgson, David J. (2010) On reducibility and ergodicity of population projection matrix models. Methods in Ecology and Evolution . no-no. ISSN 2041-210X

Full content URL: http://doi.org/10.1111/j.2041-210X.2010.00032.x

Full text not available from this repository.

Item Type:Article
Item Status:Live Archive

Abstract

1. Population projection matrices (PPMs) are probably the most commonly used empirical population models. To be useful for predictive or prospective analyses, PPM models should generally be irreducible (the associated life cycle graph contains the necessary transition rates to facilitate pathways from all stages to all other stages) and therefore ergodic (whatever initial stage structure is used in the population projection, it will always exhibit the same stable asymptotic growth rate).

2. Evaluation of 652 PPM models for 171 species from the literature suggests that 24·7% of PPM models are reducible (parameterized transition rates do not facilitate pathways from all stages to all other stages). Reducible models are sometimes ergodic but may be non‐ergodic (the model exhibits two or more stable asymptotic states with different asymptotic stable growth rates, which depend on the initial stage structure used in the population projection). In our sample of published PPMs, 15·6% are non‐ergodic.

3. This presents a problem: reducible–ergodic models often defy biological rationale in their description of the life cycle but may or may not prove problematic for analysis as they often behave similarly to irreducible models. Reducible–non‐ergodic models will usually defy biological rationale in their description of the both the life cycle and population dynamics, hence contravening most analytical methods.

4. We provide simple methods to evaluate reducibility and ergodicity of PPM models, present illustrative examples to elucidate the relationship between reducibility and ergodicity and provide empirical examples to evaluate the implications of these properties in PPM models.

5. As a prevailing tool for population ecologists, PPM models need to be as predictive as possible. However, there is a large incidence of reducibility in published PPMs, with significant implications for the predictive power of such models in many cases. We suggest that as a general rule, reducibility of PPM models should be avoided. However, we provide a guide to the pertinent analysis of reducible matrix models, largely based upon whether they are ergodic or not.

Keywords:ergodic, irreducible, non-ergodic, population projection matrix, reducible
Subjects:C Biological Sciences > C180 Ecology
C Biological Sciences > C170 Population Biology
Divisions:College of Science > School of Life Sciences
ID Code:36158
Deposited On:09 Oct 2019 12:30

Repository Staff Only: item control page