Cosar, Serhan and Bellotto, Nicola (2020) Human Re-Identification with a Robot Thermal Camera using Entropy-based Sampling. Journal of Intelligent and Robotic Systems, 98 (1). pp. 85-102. ISSN 0921-0296
Full content URL: https://doi.org/10.1007/s10846-019-01026-w
Documents |
|
|
![]() |
PDF
jint18serhan.pdf Restricted to Repository staff only 5MB | |
![]() |
PDF
Coşar-Bellotto2019_Article_HumanRe-IdentificationWithARob.pdf - Whole Document Available under License Creative Commons Attribution 4.0 International. 4MB |
Item Type: | Article |
---|---|
Item Status: | Live Archive |
Abstract
Human re-identification is an important feature of domestic service robots, in particular for elderly monitoring and assistance, because it allows them to perform personalized tasks and human-robot interactions. However vision-based re-identification systems are subject to limitations due to human pose and poor lighting conditions. This paper presents a new re-identification method for service robots using thermal images. In robotic applications, as the number and size of thermal datasets is limited, it is hard to use approaches that require huge amount of training samples. We propose a re-identification system that can work using only a small amount of data. During training, we perform entropy-based sampling to obtain a thermal dictionary for each person. Then, a symbolic representation is produced by converting each video into sequences of dictionary elements. Finally, we train a classifier using this symbolic representation and geometric distribution within the new representation domain. The experiments are performed on a new thermal dataset for human re-identification, which includes various situations of human motion, poses and occlusion, and which is made publicly available for research purposes. The proposed approach has been tested on this dataset and its improvements over standard approaches have been demonstrated.
Keywords: | robot vision, thermal images, re-identification |
---|---|
Subjects: | G Mathematical and Computer Sciences > G700 Artificial Intelligence H Engineering > H671 Robotics G Mathematical and Computer Sciences > G740 Computer Vision |
Divisions: | College of Science > School of Computer Science |
ID Code: | 35778 |
Deposited On: | 26 Apr 2019 08:29 |
Repository Staff Only: item control page