Jucker, Tommaso, Bongalov, Boris, Burslem, David F. R. P. , Nilus, Reuben, Dalponte, Michele, Lewis, Simon L., Phillips, Oliver L., Qie, Lan and Coomes, David A. (2018) Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 21 (7). pp. 989-1000. ISSN 1461-023X
Full content URL: https://doi.org/10.1111/ele.12964
Documents |
|
![]() |
PDF
qie 8.pdf - Whole Document Available under License Creative Commons Attribution-NoDerivatives 4.0 International. 1MB |
Item Type: | Article |
---|---|
Item Status: | Live Archive |
Abstract
Abstract Topography is a key driver of tropical forest structure and composition, as it constrains local nutrient and hydraulic conditions within which trees grow. Yet, we do not fully understand how changes in forest physiognomy driven by topography impact other emergent properties of forests, such as their aboveground carbon density (ACD). Working in Borneo – at a site where 70-m-tall forests in alluvial valleys rapidly transition to stunted heath forests on nutrient-depleted dip slopes – we combined field data with airborne laser scanning and hyperspectral imaging to characterise how topography shapes the vertical structure, wood density, diversity and ACD of nearly 15 km2 of old-growth forest. We found that subtle differences in elevation – which control soil chemistry and hydrology – profoundly influenced the structure, composition and diversity of the canopy. Capturing these processes was critical to explaining landscape-scale heterogeneity in ACD, highlighting how emerging remote sensing technologies can provide new insights into long-standing ecological questions.
Keywords: | Aboveground carbon density, airborne laser scanning (or LiDAR), biodiversity, canopy height, gap fraction, hyperspectral imaging, remote sensing, terrain elevation, slope and curvature, wood density |
---|---|
Divisions: | College of Science > School of Life Sciences |
ID Code: | 35394 |
Deposited On: | 15 Mar 2019 15:23 |
Repository Staff Only: item control page