M., Ghalamzan E. Amir, Mavrakis, Nikos, Kopicki, Marek , Stolkin, Rustam and Leonardis, Ales (2016) Task-relevant grasp selection: A joint solution to planning grasps and manipulative motion trajectories. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) . pp. 907-914. ISSN 2153-0866
Full content URL: https://doi.org/10.1109/IROS.2016.7759158
Documents |
|
![]() |
PDF
task_rel.pdf - Whole Document 4MB |
Item Type: | Article |
---|---|
Item Status: | Live Archive |
Abstract
This paper addresses the problem of jointly planning both grasps and subsequent manipulative actions. Previously, these two problems have typically been studied in isolation, however joint reasoning is essential to enable robots to complete real manipulative tasks. In this paper, the two problems are addressed jointly and a solution that takes both into consideration is proposed. To do so, a manipulation capability index is defined, which is a function of both the task execution waypoints and the object grasping contact points. We build on recent state-of-the-art grasp-learning methods, to show how this index can be combined with a likelihood function computed by a probabilistic model of grasp selection, enabling the planning of grasps which have a high likelihood of being stable, but which also maximise the robot's capability to deliver a desired post-grasp task trajectory. We also show how this paradigm can be extended, from a single arm and hand, to enable efficient grasping and manipulation with a bi-manual robot. We demonstrate the effectiveness of the approach using experiments on a simulated as well as a real robot.
Keywords: | Robotic, grasping and manipulation, manipulability |
---|---|
Subjects: | H Engineering > H671 Robotics |
Divisions: | College of Science > School of Computer Science |
ID Code: | 34766 |
Deposited On: | 12 Apr 2019 08:38 |
Repository Staff Only: item control page