Transcranial alternating current stimulation at 10 Hz modulates response bias in the Somatic Signal Detection Task

Craddock, Matt, Klepousniotou, Ekaterini, El-Deredy, Wael , Poliakoff, Ellen and Lloyd, Donna M. (2019) Transcranial alternating current stimulation at 10 Hz modulates response bias in the Somatic Signal Detection Task. International Journal of Psychophysiology, 135 . pp. 106-112. ISSN 0167-8760

Full content URL: https://doi.org/10.1016/j.ijpsycho.2018.12.001

Documents
Transcranial alternating current stimulation at 10 Hz modulates response bias in the Somatic Signal Detection Task
Author's accepted manuscript

Request a copy
Transcranial alternating current stimulation at 10 Hz modulates response bias in the Somatic Signal Detection Task
Published Open Access manuscript
[img]
[Download]
[img] PDF
tacs_manuscript_2nd_revision.pdf - Whole Document
Restricted to Repository staff only

421kB
[img] PDF
1-s2.0-S0167876018303039-main.pdf - Whole Document
Available under License Creative Commons Attribution 4.0 International.

788kB
Item Type:Article
Item Status:Live Archive

Abstract

Ongoing, pre-stimulus oscillatory activity in the 8-13 Hz alpha range has been shown to correlate with both true and false reports of peri-threshold somatosensory stimuli. However, to directly test the role of such oscillatory activity in behaviour, it is necessary to manipulate it. Transcranial alternating current stimulation (tACS) offers a method of directly manipulating oscillatory brain activity using a sinusoidal current passed to the scalp. We tested whether alpha tACS would change somatosensory sensitivity or response bias in a signal detection task in order to test whether alpha oscillations have a causal role in behaviour. Active 10 Hz tACS or sham stimulation was applied using electrodes placed bilaterally at positions CP3 and CP4 of the 10-20 electrode placement system. Participants performed the Somatic Signal Detection Task (SSDT), in which they must detect brief somatosensory targets delivered at their detection threshold. These targets are sometimes accompanied by a light flash, which could also occur alone. Active tACS did not modulate sensitivity to targets but did modulate response criterion. Specifically, we found that active stimulation generally increased touch reporting rates, but particularly increased responding on light trials. Stimulation did not interact with the presence of touch, and thus increased both hits and false alarms. TACS stimulation increased reports of touch in a manner consistent with our observational reports, changing response bias, and consistent with a role for alpha activity in somatosensory detection.

Keywords:somatosensation, alpha oscillations, transcranial alternating current stimulation, signal detection theory
Subjects:C Biological Sciences > C850 Cognitive Psychology
B Subjects allied to Medicine > B140 Neuroscience
C Biological Sciences > C830 Experimental Psychology
C Biological Sciences > C800 Psychology
Divisions:College of Social Science > School of Psychology
ID Code:34441
Deposited On:13 Feb 2019 16:06

Repository Staff Only: item control page