Improved performance of motor-drive systems by SAW shaft torque feedback

Schofield, N, O'Sullivan, T M, Bingham, Chris and Lonsdale, A (2004) Improved performance of motor-drive systems by SAW shaft torque feedback. Transactions of the Institute of Measurement and Control, 37 (9). pp. 276-283. ISSN 0142-3312

Documents
Improved performance of motor-drive systems by saw shaft torque feedback
The paper describes the application of a non-contact, high bandwidth, low cost, SAW-based torque measuring system for improving the dynamic performance of industrial process motor-drive systems. Background to the SAW technology and its motor integration is discussed and a resonance ratio control (RRC) technique for the coordinated motion control of multi-inertia mechanical systems, based on the measurement of shaft torque via a SAW-based torque sensor is proposed. Furthermore, a new controller structure, RRC plus disturbance feedback is proposed, which enables the controller to be designed to independently satisfy tracking and regulation performance. A tuning method for the RRC structure is given based on the ITAE index, normalized as a function of the mechanical parameters enabling a direct performance comparison between a basic proportional and integral (PI) controller. The use of a reduced-order state observer is presented to provide a dynamic estimate of the load-side disturbance torque for a multi-inertia mechanical system, with an appraisal of the composite closed-loop dynamics. The control structures are experimentally validated and demonstrate significant improvement in dynamic tracking performance, whilst additionally rejecting periodic load side disturbances, a feature previously unrealisable except by other, high-gain control schemes that impose small stability margins.
[img]
[Download]
[img]
Preview
PDF
Improved_Performance_of_Motor_Drive_Systems_Schofield.pdf - Whole Document

361kB
Item Type:Article
Item Status:Live Archive

Abstract

The paper describes the application of a non-contact, high bandwidth, low cost, SAW-based torque
measuring system for improving the dynamic performance
of industrial process motor-drive systems. Background to
the SAW technology and its motor integration is discussed
and a resonance ratio control (RRC) technique for the
coordinated motion control of multi-inertia mechanical
systems, based on the measurement of shaft torque via a
SAW-based torque sensor is proposed. Furthermore, a
new controller structure, RRC plus disturbance feedback
is proposed, which enables the controller to be designed to
independently satisfy tracking and regulation
performance. A tuning method for the RRC structure is
given based on the ITAE index, normalized as a function of
the mechanical parameters enabling a direct performance
comparison between a basic proportional and integral (PI)
controller. The use of a reduced-order state observer is
presented to provide a dynamic estimate of the load-side
disturbance torque for a multi-inertia mechanical system,
with an appraisal of the composite closed-loop dynamics.
The control structures are experimentally validated and
demonstrate significant improvement in dynamic tracking
performance, whilst additionally rejecting periodic load
side disturbances, a feature previously unrealisable except
by other, high-gain control schemes that impose small
stability margins.

Additional Information:The paper describes the application of a non-contact, high bandwidth, low cost, SAW-based torque measuring system for improving the dynamic performance of industrial process motor-drive systems. Background to the SAW technology and its motor integration is discussed and a resonance ratio control (RRC) technique for the coordinated motion control of multi-inertia mechanical systems, based on the measurement of shaft torque via a SAW-based torque sensor is proposed. Furthermore, a new controller structure, RRC plus disturbance feedback is proposed, which enables the controller to be designed to independently satisfy tracking and regulation performance. A tuning method for the RRC structure is given based on the ITAE index, normalized as a function of the mechanical parameters enabling a direct performance comparison between a basic proportional and integral (PI) controller. The use of a reduced-order state observer is presented to provide a dynamic estimate of the load-side disturbance torque for a multi-inertia mechanical system, with an appraisal of the composite closed-loop dynamics. The control structures are experimentally validated and demonstrate significant improvement in dynamic tracking performance, whilst additionally rejecting periodic load side disturbances, a feature previously unrealisable except by other, high-gain control schemes that impose small stability margins.
Keywords:saw torque transducer
Subjects:H Engineering > H600 Electronic and Electrical Engineering
Divisions:College of Science > School of Engineering
ID Code:2596
Deposited On:30 May 2010 18:55

Repository Staff Only: item control page