Sub-micron sized saccharide fibres via electrospinning

Lepe, Pablo, Tucker, Nick, Simmons, Lyall , Watson, Andrew, Fairbanks, Antony and Staiger, Mark (2016) Sub-micron sized saccharide fibres via electrospinning. Electrospinning, 1 (1). pp. 1-9. ISSN 2391-7407

Full content URL: https://doi.org/10.1515/esp-2016-0001

Documents
esp-2015-0001_proof1.pdf
[img]
[Download]
[img]
Preview
PDF
esp-2015-0001_proof1.pdf - Whole Document

1MB
Item Type:Article
Item Status:Live Archive

Abstract

In this work, the production of continuous submicron diameter saccharide fibres is shown to be possible using the electrospinning process. The mechanism for the formation of electrospun polymer fibres is usually attributed to the physical entanglement of long molecular chains. The ability to electrospin continuous fibre from a low molecular weight saccharides was an unexpected phenomenon. The formation of sub-micron diameter “sugar syrup” fibres was observed in situ using high speed video. The trajectory of the electrospun saccharide fibre was observed to follow that typical of electrospun polymers. Based on initial food grade glucose syrup tests, various solutions based on combinations of syrup components, i.e. mono-, di- and tri-saccharides, were investigated to map out materials and electrospinning conditions that would lead to the formation of fibre. This work demonstrated that sucrose exhibits the highest propensity for fibre formation during electrospinning amongst the various types of saccharide solutions studied. The possibility of electrospinning low molecular weight saccharides into sub-micron fibres has implications for the electrospinability of supramolecular polymers and other biomaterials

Keywords:electrospinning, saccharides, carbohydrates, bmjdoi, NotOAChecked
Subjects:H Engineering > H890 Chemical, Process and Energy Engineering not elsewhere classified
Divisions:College of Science > School of Engineering
ID Code:19590
Deposited On:14 Nov 2015 20:42

Repository Staff Only: item control page