
  

  

Abstract— In ultrasound elastography, tissue axial strains 
are obtained through the differentiation of measured axial 
displacements. However, during the measurement process, the 
displacement signals are often contaminated with de-
correlation noise caused by changes in the speckle pattern in 
the tissue. Thus, the application of the gradient operator on the 
displacement signals results in the presence of amplified noise 
in the axial strains, which severely obscures the useful 
information. The use of an effective denoising scheme is 
therefore imperative. In this paper, a method based on a two-
stage consecutive filtering approach is proposed for the 
accurate estimation of axial strains. The presented method 
considers a cascaded system of a frequency filter and a time 
window, which are both designed such that the overall system 
operates optimally as a minimum variance estimator. 
Experimentation on simulated signals shows that the two-stage 
scheme employed in this study has good potential as a denoising 
method for ultrasound elastograms. 

I. INTRODUCTION 

 ltrasound elastography is a relatively new medical 
technique which can provide images of the strain 

distribution of soft tissue under static compression [1]. It is 
most commonly used to reveal changes in the tissue stiffness 
which may be due to abnormal pathological processes, such 
as cancer. A strain image is obtained by reconstructing the 
mechanical properties of the tissue based on measurements 
of internal deformations when small amounts of external 
compression are applied to the tissue. The exerted 
compression induces a displacement of the non-uniformities 
in the tissue which can cause scattering of the ultrasound 
wave. Thus, by comparing ultrasound readings before and 
after compression the induced displacement of the tissue can 
be determined [2]. Finally, the strains are calculated as the 
first-order derivatives of the measured displacements. The 
resulting strain matrix which is typically displayed as a grey 
scale image is called the elastogram. 

Unfortunately, the spatial distribution of the tissue 
scatterers used for displacement tracking undergoes changes 
under the applied compression (speckle pattern de-
correlation) and thus, the measured displacements become 
corrupted with noise. Although the statistics of this noise are 
unknown, the desired signal consists largely of low 
frequencies apart from the areas of the boundary between the 
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(healthy) medium and the (potentially malicious) inclusion, 
where relatively higher frequencies are present. Since the 
gradient operator is known to boost high frequencies the 
noise components mainly dominate the resulting elastogram. 
Denoising of the elastogram is clearly necessary; however, 
the application of a conventional low-pass filter is 
problematic due to the global effect of the cut-off frequency 
on the signal. If the cut-off threshold is set too low then 
noise will be eliminated at the expense of a loss of resolution 
around the boundary of the inclusion. On the other hand, if 
the cut-off is set higher then undesirable amounts of noise 
will also pass through. Therefore, any scheme based on a 
single filter would be unable to denoise elastography signals 
effectively. 

Alternative denoising methods such as those based on 
discrete wavelet transforms (WT) [3], [4], fractional Fourier 
transform (FrFT) [5] and short-time Fourier transform 
(STFT) [6] have been proposed for the accurate estimation 
of strain signals. Despite the preliminary nature of the above 
works, the presented results appeared promising. However, a 
number of limitations seem to be inherent in those 
approaches. For example, the efficiency of wavelet 
denoising heavily relies on a number of factors such as the 
choice of basis functions, the number of decomposition 
levels, and the thresholding strategy. Even worse, the 
truncation of wavelet coefficients often generates 
interference in the form of pseudo-Gibbs artifacts. 
Meanwhile, the efficiency of methods based on the FrFT and 
STFT – at their current phase – also depends on empirically-
determined parameters. 

The method proposed here is based upon the idea of 
filtering consecutively in different domains [7]. Such an 
operation was shown to potentially outperform any single-
stage filtering approach. In this work, a two-stage denoising 
system is employed which consists of a Fourier-domain 
filter followed by a time-domain window. Following the 
method in [7] both the frequency response of the filter and 
the shape of the time window are designed such that the 
overall system yields an optimal result in a minimum 
variance sense. We further compare the performance of the 
proposed method with that of a single-stage optimal filter as 
well as with the STFT and FrFT-based approaches using 
simulated elastograms. 

Section II provides a concise overview of the theoretical 
background and describes the algorithm. In section III, 
experimental results are provided. Conclusions are finally 
drawn in section IV.  
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II. THEORETICAL BACKGROUND 

A. Optimal frequency-domain filter 

In measurements under additive noise, the following 
observation model can be assumed in discrete form: 

         ,                                       (1) 
where  are column vectors of size N representing the 
acquired signal, the ideal process, and the noise realisation, 
respectively. The goal of the filter is to find an estimate,  , 
which would be as close as possible to the ideal . A natural 
optimality criterion is the mean square error (MSE), which 
can be defined as: 

 ,                           (2) 

which, due to Parseval’s relation is also equal to: 

mse(   ,                           (3) 

where  is the Fourier transform of , i.e. , with F 
being the DFT matrix. For the common setting depicted in 
Fig.1a it holds that: 

,                     (4) 

where , and  is a diagonal matrix whose non-zero 
elements (h0,h1,…,hN-1) form the frequency response of the 
filter. By minimising (3) with respect to (h0,h1,…,hN-1) the N 
components of the optimal frequency response can be 
determined as: 

 .       (5) 

Under the assumption that the noise is independent of the 
ideal signal, (5) can be expressed as: 

 ,      (6) 

which is the ensemble average energy density of the signal 
at the time instant i, divided by the sum of the ensemble 
averages of the energy densities of the signal and noise at the 
same time instant. 

B. Optimal two-stage filtering system 

Considering the system configuration shown in Fig. 1b, 
the estimate  is equal to: 

                       ,                                 (7) 

where  

 ,        k=1, 2 

with , i.e. (h1,0,h1,1,…,h1,N-1) and 
(h2,0,h2,1,…,h2,N-1), being the frequency response of the 

filter and the window function, respectively. The objective is 
then to determine the optimal  and  which minimise 

(2). The non-linearity of the problem makes it difficult to  
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Fig. 1 (a) Block diagram of a single stage filter, (b) Block diagram of the 
two-stage filtering approach. 

 
find an analytic solution. A usual approach in such 
optimisation problems is to adopt an iterative procedure in 
which one function is optimised at a time by keeping the 
other fixed to its values obtained during the preceding 
iteration. Such an approach has also been followed in [7] and 
is briefly summarised in the following paragraphs.   

At the beginning, both the diagonal matrices  and  
are initialized to identity matrices. Then, starting with the 
first function , an estimate for its optimum expression can 
be calculated based on (5).  

In the second iteration, the preliminary solution for  is 
used to obtain an initial estimate of the optimum. Thus, 
(7) can be written as , where (the identity 
matrix) and . Minimising (2) yields [7]: 

 ,         (8) 

where , and ‘*’ denotes the 
element-wise multiplication between two matrices, whereas  

. Also,    and   
 are correlation matrices, which under the 

assumption of the noise being independent of the ideal signal 
can also be obtained as  and . 

The third iteration focuses back on  with (7) now 
expressed as , where and .  By 
minimising (2) the solution is obtained similarly to (8), i.e. 

 , with D and c having the same structure as 
before. 

The above steps are repeated with  and  being 
updated accordingly at each iteration. Once the solutions 
converge the iterations stop. 

C. Best-case scenarios 

  The motivation for investigating the above two-stage 
filtering scheme as a possible method for enhancing 
ultrasound elastograms arises from the performance 
advantages that this approach may have over a simple 
single-stage filter. To illustrate this, we compare the best-
case scenarios for both filters, i.e. assuming that the statistics 
of the ideal signal and the noise are known, we examine 



  

what is the optimal result that can be achieved by each of the 
two methods.  

Fig. 2a depicts a noise-free (ideal) simulated elastogram, 
and Fig. 2b shows a realization of the corrupted elastogram. 
The denoised result of the single-stage optimal filter is 
presented in Fig. 2c, whereas the result based on the 
application of the two-stage scheme is shown in Fig. 2d. It is 
clear that the second method yields a much more accurate 
estimate of the ideal elastogram. 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. (a) Simulation of ideal elastogram, and (b) corrupted elastogram 
(SNR= – 16.28dB). Recovered elastogram after denoising with: (c) the 

single-stage optimal filter, and (d) the optimal two-stage system. 

 

III.  EXPERIMENTAL RESULTS 

The tissue displacement data that was used in our 
experiments was simulated using the two-dimensional (2-D) 
analytic model equations introduced by Muskhelishvili [8]. 
An ideal mechanical strain image using this model is 
depicted in Fig. 2a. The model assumes that the tissue was 
subjected to an inward uniaxial compression of 314 Pa, 
under the condition that the strain is minimal in the outward 
direction of the plane (plane-strain state). The dimension of 
the simulated phantom was 100 x 100mm with an inclusion 
radius of 10mm which is assumed to be 4 times stiffer than 
the background medium. 

Zero-mean white Gaussian noise was added to the 
displacement at a signal-to-noise (SNR) ratio of 40dB. The 
axial strain was computed using first-order forward 
differences of the noisy displacement image along the 
horizontal direction. The resulted elastogram has an SNR of 
– 16.28 dB. Fig. 3a shows the central slice of a noisy 
realization of the displacement while Fig. 3b presents the 
corresponding central slice of the elastogram. The severe 
amplification of the noise due to the differentiation process 

and the consequent distortion of the elastogram can be 
appreciated. 

 (a)      (b) 
Fig. 3. (a) Noisy displacement profile taken along the center of the 

displacement image (b) Calculated axial strain slice (dotted line) taken 
along the center of the resulting elastogram contrasted to the ideal axial 

strain (solid line). 

 
 
The contrast-to-noise ratio (CNRe) proposed in [9] was 

used in our experiments to quantify the performance of the 
different methods and facilitate comparisons between them. 
CNRe is defined as: 

                (9) 

where �s1 and �s2 represent the mean value of strain in the 

inclusion and the medium, and �s1 and �s2 denote the strain 

variances, respectively. A high CNRe signifies a readable 
elastogram whereas low values of this metric indicate a poor 
image. 
    Along with the single-stage Fourier filter and the two-
stage filtering system described in Section II, two other 
recently proposed methods have been included in the 
conducted experiments. The FrFT-based denoising method 
[5] and the masked STFT scheme described in [6] were 
applied to the same noisy realization of the simulated 
elastogram that was used for all the presented results. The 
parameters required for the latter two methods were 
determined empirically as this was done in [5] and [6], 
respectively. For the given realization the FrFT-based 
method achieved a CNRe value of 65.69dB whereas the 
masked STFT approach resulted in a value of 60.60dB. The 
resulting elastograms are shown in Fig.4c and Fig.4d, while 
the axial strains corresponding to the central slices of the 
filtered elastograms are compared in Fig.5c and Fig.5d. 
 Both equations (6) and (8) refer to averages obtained from 
ensembles of realizations of the ideal and noise processes. In 
a real-world experiment these would not be available and 
therefore need to be estimated. In this work, we treated the 



  

simulated elastogram as an experimental measurement 
therefore assuming that the ideal signal is unknown. Instead, 
we generated a number of estimates of the ideal process by 
low-pass filtering simulated noisy elastograms at different 
cut-off frequencies. The simulated noisy elastograms could 
represent repeated ultrasonic measurements of the same 
tissue area under varied compression levels. The noise 
ensemble was created by generating a number of noise 
realizations and then taking their first derivative. In the 
clinical lab, this could be replaced by a few measurements of 
healthy tissue displacements, which would then be 
differentiated with their offset being subsequently removed. 
    Based on the above sets, estimates of the correlations  
and  were obtained and used for the derivation of the 
multiplicative functions of the methods in Section II. The 
proposed two-stage filter resulted in a CNRe value of 
66.93dB whereas the single-stage filter achieved a lower 
ratio of 49.08dB. The resulting elastograms are shown in 
Fig.4a and Fig.4b. The central slices of the filtered 
elastograms are compared in Fig.5a and Fig.5b. 

IV. DISCUSSION 

We have presented a new approach for enhancing 
ultrasound elastograms. The method is based on a two-stage 
system comprising two multiplicative functions of which 
one is applied in the frequency domain and the other in the 
time-domain. The overall system was designed as a 
minimum variance estimator and the two functions were 
optimized accordingly. Using simulated data we explored 
the potential advantages of this method in denoising 
elastograms in comparison with Fourier filtering as well as 
with two more modern approaches based on the STFT and 
the FrFT. The experimental outcomes indicate that the 
method can outperform the other schemes with respect to the 
achieved CNRe values, and also according to what visual 
inspection of the resulting elastograms suggests. It should be 
noted that each of the two modern approaches included in 
our comparisons had independently been shown [5], [6] to 
be superior to commonly used denoising approaches for the 
elastogram. Further experimentation involving clinical data 
will have to follow in order to validate this new approach 
and fully assess its advantages and limitations.  
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Fig. 4. Calculated elastogram after denoising with: (a) the proposed two-
stage filter, (b) the single-stage filter, (c) the FrFT-based filter, and (d) the 

masked STFT method. 
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c) d) 
Fig. 5. Axial strain slices (solid lines) taken along the center of the resulting 

elastogram after denoising with: (a) the proposed two-stage filter, (b) the 
single-stage filter, (c) the FrFT-based filter, and (d) the masked STFT 

method. The reference axial strain is also shown (dotted line). 
 
 
 
 


