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ABSTRACT
The goal of this work is to propose a simple continuous model that captures the dielectric properties of water at the nanometric
scale. We write an electrostatic energy as a functional of the polarisation field containing a term in P4 and non-local Gaussian
terms. Such a hamiltonian can reproduce two key properties of water: the saturation of the polarisation response of water in
the presence of a strong electrostatic field and the nanometric dipolar correlations of the solvent molecules modifying the long
range van der waals interaction. This model explores thus two fundamental aspects that have to be included in implicit models
of electrolytes for a relevant description of electrostatic interactions at nanometric scales.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5080183

I. INTRODUCTION

The dielectric properties of a medium represent a crucial
model ingredient of any theory of condensed matter phase in
that they underlay many phenomena characteristic of the said
medium: from the solvation energy1,2 and the role of ions in
liquid phases3 to the dispersion forces between mesoscopic
media of different kinds.4 Changing the dielectric model can
have dramatic effects on the qualitative behavior of a system
indeed.5–9

For most liquid phases, one can assume that the dielec-
tric response is local—i.e., the medium dielectric polarisation
field at any given point only depends on the electric field at
that same point—and linear—i.e., the medium dielectric polar-
isation field and the electric field can be related by a simple
electric-field-independent linear kernel. This is a very good
approximation for systems much larger than the solvent dipo-
lar correlation lengths and for weak electric fields but which
becomes a priori insufficient for other scenarios. For example,
lab-on-chip experiments involving micro- and nano-fluidic
channels are on the rise,10,11 many of the biological organelles

are of nanometric size,12 the dielectric response of the
solvent in an ion’s hydration shell cannot be modeled with lin-
ear models that overestimate it,8,13 and numbers of recent
experimental and numerical measurements have confirmed
that the dielectric properties of the fluid close to interfaces
drastically differ from bulk properties.14,15

To make things worse, water, the most ubiquitous liq-
uid on Earth, has been shown to display features char-
acteristic of non-local dielectric models with bulk dipolar
correlations that extend over few nanometers and oscil-
late. This is because water is an associated liquid struc-
tured by a network of intermolecular hydrogen bonds.
The few kBT strength of the H-bond leads to correlations
between the water dipole orientations on a few hydration
shells.

It appears all the more relevant that water does rarely
come in “pure” form. The properties of water molecules
around ions remain a topic of active research as they play
a role both at the molecular and at the nanometric level.
For example, the electrostatic interaction between an ion
and the water molecules of its first solvation layer is the
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dominant contribution to the NMR relaxation measurements
of quadrupolar ions in liquid phase.16

It thus appears that in addition to the existing good
understanding of the local and linear dielectric responses of
liquids, it becomes increasingly important to elucidate their
nonlocal and nonlinear features too.

In practice, nonlocality and nonlinearity can be cap-
tured through the two-point susceptibility tensor χ(r, r′) of
the macroscopic electric polarisation P(r) to a change in the
electric displacement D(r′),1,6

δP(r)
δD(r′)

≡ χ(r, r′). (1)

In Eq. (1), nonlocality is expressed through components of
χ(r, r′) that differ from a Dirac-delta function, while nonlinear-
ity would manifest itself in a functional dependence of these
components on the source field D(r).

Extensive Molecular Dynamics (MD) simulations with
explicit water models such as SPC/E (extended simple point
charge model) or TIPnP17 offer an encouraging possibility of
probing nonlocal saturated dielectric properties down to the
microscopic level but do not furnish analytical expressions
of the observables. A radically different approach to consider
nonlocal properties of fluid that has also bore fruits to model
hydrophobicity is that of Density Functional Theories (DFT) for
water.18,19 They focus on the description of the density fluc-
tuations at nanometric lengthscale and give a good framework
for the study of density fluctuation driven phenomena such
as the interaction between hydrophobic objects.20 However
they do not take into account the molecular and the multi-
polar nature of the solvent. Mid-way approaches between MD
simulations and DFT can be found in molecular DFT theories
or liquid state theory integral equation approaches21 com-
bined with molecular fields such as 3D-RISM.22,23 Such multi-
scale approaches mixing continuum models with insights from
classical force fields or MD simulations include the nonlocal
dielectric properties of water and have been very useful to
estimate solvation energies of various kinds of solutes and are
still making progress to tackle the proper solvation of activa-
tion sites in proteins through combination with electronic DFT
methods.24 These latter mixed approaches have the draw-
back that, in practice, they tend to put quantities such as the
dielectric susceptibility of the solvent—e.g., water—as an input
to the theory and not an output of it25 and are furthermore
not usually analytically tractable. For these reasons, another
popular approach is that of implicit solvent continuum mod-
els relying on a quadratic Landau-Ginsburg expansion of the
free energy with respect to polarisation and density which
are able to reproduce qualitative features of the dielectric
properties and the structure factor of water.13,26–28 Never-
theless, these models being linear do not include the satu-
ration of the dielectric response in the presence of strong
fields.26,27

These nonlinear effects are of prime importance to
describe the response of water in the vicinity of charges. Ulti-
mately, the dielectric properties of electrolytes at the nano-
metric scale are the results of water-water, water-ion, and

ion-ion interactions, and an implicit model treating solvent
and ions on the same footing while accounting for nonlocal
and nonlinear effects is still missing. Some progress has been
made in recent years along these lines.29,30

Continuous field-theoretic models derived from a micro-
scopic description of water as a gas of Langevin dipoles
give access to the aforementioned saturation effects in
water.31–33 These models describe the existence of a hydra-
tion shell associated with a low permittivity surrounding
an ion which is coherent with the low interfacial permit-
tivity recently measured15 and can induce the permittivity
decrement observed in electrolytes.34 However the model
is purely local and does not include the lengthscale asso-
ciated with water-water correlations. The goal of this work
is therefore to combine the strengths of the nonlocal lin-
ear Landau-Ginsburg functionals with that of the nonlinear
field-theoretic models by proposing a model for water com-
prising both nonlocal and nonlinear effects and by probing the
dielectric properties of such a medium in the surrounding of
an ion.

In this paper, we focus on the dielectric properties of
water and propose a nonlocal nonlinear functional of the
polarization field P defined as the density of water dipoles.

This paper is organized as follows: In the first part, we
present a nonlocal nonlinear functional of the polarization P
and show that this model captures dielectric properties of bulk
water. In the second part, we consider the response of this
medium to an ion and study the combined effects of non-
locality and nonlinearity. In the third part, we evaluate the
full nonlinear nonlocal position-dependent 1-point dielectric
response of the polarisation in the hydration shell. The last
part is devoted to the conclusion.

A. Description of the model and theory
We consider a continuous dielectric medium charac-

terised by a statistical polarisation vector field P(r) and the
corresponding electrostatic energy written as a functional of
the polarization vector P(r),

H[P] =
1

2ε0

∫
d3r

[
γ(P(r)2 + P2

0)2 + κl(∇ ·P(r))2 + α(∇(∇ ·P(r)))2
]

+
1

2ε0

∫
d3rd3r′

∇r ·P(r)∇r′ ·P(r′)
4π |r − r′ |

. (2)

With the system being rotational invariant, the appropriate
order parameter is P(r) ·P(r). The term ∫ d3rγ(P(r)2 +P2

0)2 con-
tains a term scaling in (P(r) · P(r))2 corresponding to the first
nonlinear contribution to consider.27 The reference polarisa-
tion P0 introduces a threshold value for this nonlinear behav-
ior that occurs for P larger than P0. The derivative terms of
the functional introduce scale dependent dielectric proper-
ties. The last term corresponds to the long-range Coulomb
interaction.

We then introduce the partition function of the model via

Z[D0] ≡
∫

D[P]e−βH[P]+ β
ε0
∫ d3rP(r)·D0(r), (3)
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where D0(r) = ε0E0 and E0 is the external electrostatic field.
We note that D0(r) also enables Z[D0] to act as a generating
functional of the moments of P. In particular, the macroscopic
polarisation field reads

P(r) ≡ 〈P(r)〉 =
ε0

β

1
Z[D0]

δZ[D0]
δD0(r)

, (4)

and the two-point moment tensor reads

〈P(r) ⊗ P(r′)〉 =
ε2

0

β2

1
Z[D0]

δ2Z[D0]
δD0(r)δD0(r′)

. (5)

From Eq. (1), it then becomes

χ(r, r′) =
β

ε0
(〈P(r) ⊗ P(r′)〉 − P(r) ⊗ P(r′)). (6)

The mean field polarisation PMF(r) of this medium is, by
definition, the most probable field configuration, i.e., the field
minimising the energy,

δH[P]
δP(r)

�����P(r)=PMF(r)
=

1
ε0

D0(r) (7)

and is the solution of the equation

2γPMF(r)
(
PMF(r)2 + P2

m

)
− κl∇(∇ · PMF(r))

+α∇(∇ · (∇(∇ · PMF(r)))) = D0(r), (8)

with

Pm = ±P0

√
1 + 1/(2γP2

0). (9)

In bulk, the right hand side of Eq. (8) is identically zero and
the mean polarisation vanishes, PMF = 0. The polarisation
Pm is a threshold value distinguishing two behaviors of the
medium. For polarisation response or fluctuations smaller or
larger than Pm, the medium behaves as a linear medium or a
nonlinear medium.

B. Susceptibility and bulk polarisation correlations
of water to the Gaussian expansion

In order to capture the susceptibility tensor χ, the par-
tition function in Eq. (3) can be estimated by expanding H[P]
about the bulk mean field solution PMF(r) = 0,

Z[D0] ≈ e−βH[PMF(r)=0]

×

∫
D[δP]e−

β
2 ∫ d

3r ∫ d3r′δP(r)M−1
r,r′ δP(r′)+ β

ε0
∫ d3rD0(r)·P(r)

≈

√
2π

β det(M−1)
e−βH[PMF(r)=0]e

β

2ε2
0
∫ d3r ∫ d3r′D0(r)Mr,r′D0(r′)

(10)

with P(r) = PMF + δP(r) and M−1
r,r′ being the second functional

derivative of H[P] with respect to P and evaluated at the bulk

mean field value M−1
r,r′ ≡

δH
δP(r)δP(r′)

����PMF=0
. Using Eq. (2), one finds

M−1
r,r′ =

1
ε0

(
2γP2

mId + κl(∇r ·) ⊗ (∇r ·)

+α(∇r∇r ·) ⊗ (∇r∇r ·)
)
δ(r − r′). (11)

Applying Eqs. (4) and (6) to Eq. (10), it follows that at the
Gaussian level we have

P(r) Gauss.
=

1
ε0

∫
d3r′Mr,r′D0(r′), (12)

χ(r, r′) Gauss.
=

1
ε0

Mr,r′ . (13)

From Eq. (12), we retrieve that the response of the mean polar-
isation to an external field at the Gaussian level of approxima-
tion is linear, albeit potentially nonlocal.

To resolve for χ, we make use of the fact that the ten-

sor components of M−1 take a simple form in Fourier space
decomposable in terms of longitudinal and transverse parts,

M−1
ij (q) = M−1

⊥ (q)
(
δij −

qiqj
q2

)
+ M−1

‖
(q)

qiqj
q2

with

M−1
⊥ (q) = 2γP2

m/ε0 (14)

and

M−1
‖

(q) = (2γP2
m + κlq2 + αq4)/ε0, (15)

where q is the wave vector and q is its magnitude.
Using Eqs. (5), (10), (13), and (14), the bulk polarization cor-

relations calculated to the Gaussian order can be expressed
as

〈Pα(0)Pβ (r)〉 = ε0kBT
∫

d3qeiq·rχ(q)
αβ

. (16)

The longitudinal susceptibility associated with this model
at the Gaussian level,

χ
‖ lin (q) =

1
2γP2

m + κlq2 + αq4
, (17)

has been shown to qualitatively reproduce the susceptibility of
water obtained both experimentally and using explicit mod-
els of the liquid such as SPC/E.25 In particular, it can fit the
macroscopic value of the susceptibility and the position and
value of its main maximum. The expression of the polariza-
tion correlation obtained from Eq. (16) contains an oscillating
exponentially short range term that adds to and dominates the
long range Coulombic term in 1/r3 on nanometric distances.28
Note that in this work, the transverse susceptibility χ⊥(q)
= 1/2γP2

0 is supposed to be local; however, the nonlocal trans-
verse effects can be considered in the present framework.28

C. Quantifying nonlinearities in bulk
We now want to characterise the nonlinear effects, if any,

owing to the Hamiltonian in Eq. (2). Following Ref. 5, we note
that in the linear and homogeneous case P(r) = ∫ d3r′ χ

lin
(r − r′)D0(r′). Thus, if the external field D0 is of the form D0(r)
= D0 cos(qx)ux, with x being a Cartesian coordinate and ux
being the associated unit vector, we have a polarisation of the
form P = P(x)ux satisfying

P(x) =
∫

dx′ χ
‖ lin (x − x′)D0 cos(qx′)

= χ
‖ lin (q)D0 cos(qx), (18)
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the transverse part of the response vanishing in this case.
From Eq. (18), we see that, provided the system is probed with
an external field of the proper form, one can write χ

‖ lin (q)

=
∂P(0)
∂D0

. We generalise this result by defining the Fourier trans-
form of an effective longitudinal susceptibility χ

‖ eff associated
with a general polarisation P[D0 cos(qx)],

χ
‖ eff (q,D0) ≡

∂P(q,D0, x)
∂D0

�����x=0
. (19)

At the mean field level, in the presence of the external
perturbation, the amplitude P(x) is the solution of the equation

P(x)3 + P2
m(P(x) − χbD(x)) −

κl
2γ

P(2)(x) +
α

2γ
P(4)(x) = 0, (20)

obtained from Eq. (8) and where P(i) (x) stands for the ith
derivative of P(x) and with χb ≡ χ

‖ lin (0) as the linear macro-
scopic longitudinal susceptibility of the medium given in
Eq. (17). P(x) can be expressed as an expansion in D0 to the
third order such that (cf. Appendix C) P(x) = D0χ‖ lin (q) cos(qx)

−
D3

0
4P2

mχb

(
3χ

‖ lin (q)4 cos(qx) + χ
‖ lin (q)3χ

‖ lin (3q) cos(3qx)
)
. The neg-

ative sign before the term in D3
0 reproduces the saturation

effect expected from a Hamiltonian in P4. Note that the term

FIG. 1. (a) Susceptibility and effective response of a nonlinear dielectric medium.
The dashed plot represents the susceptibility of the medium [Eq. (17)]. The blue
and red curves represent the effective response given in Eq. (19) of a medium
submitted to a small excitation, E0, for Pm = 0.09 C Å−2. The curves are obtained
for 2γP2

m = 1.01, κ l = −0.22 Å2, α = 0.012 Å4. (b) Dielectric permittivity under
constant field, ε r (E0) [Eq. (21)], for different values of Pm compared to results
obtained with molecular dynamics using the SPC/E model for water (gray points
and error bars). The molecular dynamics results are reproduced from Fig. 11 of
Ref. 36. The curves are obtained for 2γP2

m = 1.01, κ l = −0.22 Å2, α = 0.012 Å4.

in D3
0 has to be much smaller than the term in D0 to ensure the

validity of the performed expansion, translating into the con-
dition D0 �

2Pm

χ
‖ lin (q)

(
3χ
‖ lin (q)/χb+χ

‖ lin (3q)/χb
)1/2 . The corresponding

effective susceptibility can readily be obtained from Eq. (19)
and is plotted in Fig. 1 with a comparison with the Gaussian
susceptibility given in Eq. (17). The model reproduces quali-
tatively the results obtained with molecular dynamics simu-
lations by Kornyshev and co-workers with the BJH model of
water.35 The saturation effects occur first for the wave num-
ber associated with the maximum, and the susceptibility is
flattened in Fourier space, reducing the nonlocal character of
the medium, and this effect increases with the amplitude as
illustrated in Fig. 1(a). Figure 1(b) shows the comparison of the
simulation results obtained with the explicit model of water
SPC/E36 and the theoretical model presented here for the
dielectric permittivity of water under constant field,

εr(E0) = 1/(1 − χeff (0, ε0E0))

with

χeff (q,D0) ≈ χ‖ (q) −
3
2
D2

0γχ‖ (q)3(3χ‖ (q) + χ‖ (3q)), (21)

calculated using Eq. (19) expanded to D2
0 with different val-

ues of Pm. One sees that the model reproduces the trend of
the simulation results for Pm ≈ 0.09 C Å−1. For large excitation
fields, the second order expansion of ε r(E0) plotted here fails
to reproduce the simulation results.

II. POSITION-DEPENDENT DIELECTRIC RESPONSE
INDUCED BY A POINT-LIKE ION
A. Polarisation around an ion for a nonlocal
nonlinear medium

We now consider the response of the medium to the elec-
trostatic field generated by an ion located in r = 0. The corre-
sponding electric displacement field reads Dion(r) = Dion(r)ur
with

Dion(r) =
e

4πr2
, (22)

with e being the charge of the ion. At the mean field level,
the macroscopic polarisation field of the form PMF(r) = Pi(r)ur
satisfies Eq. (8) which can be written in the following dimen-
sionless form:(

Pi(r)
Pm

)3

+
Pi(r)
Pm

− κlχb*
,

P′′i (r)
Pm

+ 2
P′i(r)
rPm

− 2
Pi(r)
r2Pm

+
-

+ αχb
*.
,

P(4)
i (r)
Pm

+ 4
P(3)
i

rPm
− 4

P′′i (r)

r2Pm

+/
-
=

l2

r2
. (23)

The distance,

l =
√

e
4πPm

χb, (24)

characterises the range of the saturation effects for Pi(r) as
it is the distance beyond which the local linear response
Pll = χbe/4πl2 to the electrostatic field generated by the ion
is smaller than Pm.
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The response of a local nonlinear dielectric medium—
obtained by neglecting all the spatial derivatives of P in
Eq. (23)—and of a nonlocal linear dielectric medium—obtained
by neglecting the term in P3/P3

m in Eq. (23)—have been studied
in the literature,13,32 and some relevant results are presented
in Appendixes A and B.

We compare the polarisation around an ion obtained
in this framework with the molecular dynamics simulation
results. We solve numerically the complete equation given
in Eq. (23) with the Mathematica software. To do so, we fix
the value of the polarisation and its derivative equal to one
of the first hydration shells around a chloride obtained with
molecular dynamics simulations37 Pi(3.16 Å) = −0.68 C Å−2 and
P′i(3.16 Å) = 1.8 C Å−3, and at a distance of 1 nm, we impose local
linear conditions, i.e., Pi(10) = Ploc(10) and P′i(10) = P′loc(10) with
Ploc(r) = χbe/4πr2 and e = −1.6 10−19 C for the chloride.

The results are presented in Fig. 2. Figure 2(a) represents
the results obtained with molecular dynamics simulations (red
points) with a SPC/E model for water and a charged Lennard-
Jones sphere for the chloride (see Ref. 37 for all the param-
eters), the local linear polarisation Ploc(r) = χbe/4πr2 (gray
dashed line), and the solution of Eq. (23) for Pm = 0.1 C Å−2,
i.e., l = 3.5 Å. The polarisation presents an oscillating decay
over 1 nm before converging to the local polarisation Ploc(r).
The model presented here reproduces both the oscillations
and the range of the decay of the nonlocal contribution. This

FIG. 2. Polarisation response Pi (r) (C Å−2) to the electrostatic field generated by
a monovalent anion. (a) The plain curve represents Pi (r), solution of Eq. (23), as
a function of r, for the set of parameters given in Fig. 1 and Pm = 0.1 C Å−2,
l = 0.35 nm. The local polarisation Ploc is represented by the gray dashed line, and
the molecular dynamics results are indicated with the red points, reproduced from
Fig. 11 of Ref. 37. (b) Polarisation response Pi (r) (C Å−2), solution of Eq. (23), as
a function of r, for increasing values of l.

qualitative agreement with the molecular dynamics results is
encouraging.

Figure 2(b) represents the solution of Eq. (23) for the
aforementioned boundary conditions and for increasing val-
ues of l. One sees that the range of the oscillation regime
increases with the decrease in l.

Our nonlocal nonlinear dielectric model can thus repro-
duce both the reported saturation and oscillation behavior
of the polarisation response of water in the neighbourhood
of an ion as obtained from MD simulations. The range of
the perturbation of a charged inclusion on dielectric prop-
erties of water is about 1 nm as illustrated by computation
of the polarization or of the dielectric permittivity around a
solute reproduced in Fig. 2(a).37 At first glance, a hydration
length of 0.3 nm < l < 0.4 nm for a monovalent ion cor-
responding to a saturation polarisation of 0.08 C Å−2 < Pm
< 0.14 Å−2 gives results comparable with the qualitative behav-
ior of water reported from Refs. 14, 37, and 38. More detailed
MD simulations could permit to determine the best fitting
value of Pm for the response of water to an ion. However, to
our knowledge, the polarisation response of water to an ion
beyond the first hydration shell has not yet been computed
with MD.

B. Dielectric susceptibility in the vicinity of the ion
We now look at the macroscopic one-point dielectric

susceptibility of water in the vicinity of the ion. The dielec-
tric longitudinal susceptibility is not homogeneous in a solu-
tion and depends, in particular, on the local concentration
of ions. The static dielectric constant of an electrolyte is
known to be a decreasing function of the salt concentra-
tion.34 The intuitive comprehension of this phenomenon is
that each ion generates a strong field that “freezes” the dipoles
around it, which cannot respond anymore to an external
excitation.39

A local nonlinear dielectric medium can present a vanish-
ing dielectric permittivity in the vicinity of an ion as shown by
Orland and co-workers.32 Following their approach, we deter-
mine here the dielectric susceptibility of a nonlocal nonlinear
medium in the hydration shell of an ion pinned at r = 0.

To do so, we calculate the mean-field response of the
medium PD0 to an additional source field D0 supplementing
that of the fixed ion. Using Eq. (8), it follows

P3
D0

(r)

P3
m

+
PD0 (r)
Pm

+ κl∇
(
∇ ·

PD0 (r)
Pm

)
+ α∇

(
∇ ·

(
∇

(
∇ ·

PD0 (r)
Pm

)))
=

l2

r2
ur + χb

D0

Pm
. (25)

From Eq. (19), the bulk static longitudinal susceptibility can be
obtained by finding the polarisation response to a directional
uniform displacement field. In this part, we consider a pertur-
bation to the existing field generated by the ion of the form
D0 = D0ur. We can probe the distance-dependent effective
susceptibility around the ion for a radial polarisation response
PD0 (r) = PD0 (r)ur, via
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FIG. 3. Susceptibility for a nonlinear nonlocal medium around an ion. The blue solid
line represents χi (r) (relative to the bulk value) given in Eq. (26) for a monovalent
ion and Pm = 0.31 C Å−2, l = 0.2 nm. The dotted line represents the susceptibility
around an ion for a nonlinear local medium given in Eq. (A6), and the red dashed
line represents the bulk susceptibility, χb ≡ χ‖ lin (q = 0).

χion(r) =
∂PD0 (r)
∂D0

�����D0=0
. (26)

Equation (26) is evaluated numerically by solving Eq. (25) for a
radial excitation field and a small value of D0 as limD0→0(P(r,
D0) − P(r, 0))/D0, and the result is plotted in Fig. 3.

Figure 3 presents the dielectric susceptibility in the vicin-
ity of a monovalent ion for a nonlocal nonlinear medium, the
plain blue curve; for a nonlinear local medium, the gray dot-
ted line; and for a linear nonlocal medium, the red dashed line.
For r � l, χion(r) behaves as the susceptibility of a nonlinear
local medium. The ion is surrounded by a zone of vanish-
ing susceptibility indicating that the solvent molecules located
in the first hydration shell of the ion are “frozen,” i.e., they
interact electrostatically only with the ion and do not respond
to an external field. For a nonlinear local medium, as one
moves away from the ion, the molecules see an homogeneous
medium associated with a given bulk dielectric susceptibility.
For a nonlocal nonlinear medium, we observe an oscillating
behavior of over-responses and under-responses around the
bulk value due to the nonlocality of the medium. The influ-
ence of the ion extends over few nanometers for this set of
parameters.

III. CONCLUSION
In this article, we have proposed a functional of the

polarisation P including non-Gaussian and nonlocal terms and
reproducing the dielectric properties of water at the nano-
metric scale. We have determined the position-dependent
polarisation around a point-like ion obtained and showed the
existence of a hydration shell whose range is characterised
both by a saturation length l corresponding to a distance to
which the field generated by the ion is equal to the satu-
ration polarisation of the medium and a nonlocal length λe
owing to the dipolar correlations in bulk water. We have
shown that one effect of nonlocality is to extend the range of
saturation effects over lengthscales corresponding to short-
range molecular interactions. The behavior obtained for the
polarisation field around an ion is in qualitative agreement

with molecular dynamics results, and a comparison with more
detailed results would permit to refine the parameter values to
describe water. Finally, we determined the macroscopic sus-
ceptibility around an ion and found layers of substantial over-
and under-screening around it, already observed in water
mediated electrostatic interactions.40

To conclude, this work demonstrates the potential of
Landau-Ginsburg approaches extended beyond Gaussian and
local models and that semimicroscopic models of water, such
as the functional in P4 proposed here, are a good compro-
mise between calculation feasibility and molecular details and
could be used to efficiently model the dielectric properties of
electrolytes.
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APPENDIX A: RESPONSE OF A LOCAL NONLINEAR
DIELECTRIC MEDIUM TO THE ELECTROSTATIC FIELD
GENERATED BY AN ION

In this section, we determine the response Pnlin(r)
= Pnlin(r)ur of a local nonlinear dielectric medium to a field
generated by an ion located at r = 0. The amplitude of the
response is the solution of the equation

(Pnlin(r))3 + P2
m(Pnlin(r) − P1(r)) = 0 (A1)

obtained from Eq. (23) by neglecting the nonlocal terms.
P1(r) is equal to χbDion(r). This equation (A1) has been pre-
viously derived and solved by Orland and co-workers in the
framework of the Poisson-Dipolar model that they developed
to model aqueous electrolytes.8,32 Following their work, we
express Pnlin(r) as the root of this third-order polynomial
equation,

Pnlin(r) = Pmf
(
l2

r2

)
, (A2)

with l =
√

e
4πPm

χb and f(x) =
(
x/2 +

√
x2/4 + 1/27

) 1/3

+
(
x/2 −

√
x2/4 + 1/27

) 1/3
. The length l defines two regions: the

hydration shell r � l in which the polarisation response is
attenuated compared to the linear regimes and where the
dipoles of the solvent are frozen by the electrostatic field and
a region far from the ion r � l where the dipoles respond lin-
early to the field. Approximate expressions of Pnlin(r) are easily
obtained in these two regions,

Pnlin(r) ≈ Pm

(
l2

r2

) 1/3

for r � l (A3)

Pnlin(r) ≈ χdDion(r) for r � l. (A4)

The response Pnlin(r) is plotted in Fig. 4 for increasing values
of l and compared to the response of a linear medium. One
sees the saturation effect for r ≤ l and the rapid convergence
to a linear response for r ≥ l. Molecular dynamics results14,37
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FIG. 4. Responses of linear and nonlinear dielectric media to the electrostatic field
generated by a monovalent ion. The dashed plot represents the response of a lin-
ear medium, Plin(r) = χbD(r), with χb = 71/70; the blue and red curves correspond
to the response Pnlin(r) of nonlinear media associated with increasing hydration
length l = 0.2 nm and l = 0.4 nm. The polarisation P is expressed in C Å−2.

have shown that a local linear dielectric response is obtained
around monovalent ions for a distance of about 1 nm which
leads to l comprised between 2 Å and 4 Å, as illustrated in
Fig. 4.

The macroscopic susceptibility around the ion is obtained
by calculating the response of the polarisation in the pres-
ence of the ion to a constant field D0. We first determine the
expression of the polarisation Pnlin ,D solution of the equation

Pnlin(r)2Pnlin(r) + P2
m(Pnlin(r) − χb(Dion(r) + D0)) = 0. (A5)

One sees that Pnlin(r) is collinear to (Dion(r) + D0) in all points r
and that its amplitude Pnlin ,D(r) is equal to Pnlin ,D(r) = f(l2/r2

+ D0χb/Pm) if D0 is radial. Defining the nonlinear position-
dependent susceptibility in the presence of the ion as

χnlin(r) =
∂Pnlin,D(r)
∂D0

|D0=0. (A6)

This function is plotted in Fig. 3.

APPENDIX B: RESPONSE OF NONLOCAL LINEAR
MEDIUM TO AN ELECTROSTATIC FIELD GENERATED
BY AN ION

In this section, we calculate the response Pnloc(r) of a non-
local linear medium to the electrostatic field generated by an
ion.

Far from the ion (r � l), the polarisation tends to zero and
one can linearise Eq. (23) by neglecting the nonlinear term in
(P/Pm)3. One obtains the following linear differential equation
for a polarisation of the form Pnloc(r) = Pnloc(r)ur:

Pnloc(r)
Pm

− κlχb*
,

P′′nloc(r)

Pm
+ 2

P′nloc(r)

rPm
− 2

Pnloc(r)
r2Pm

+
-

+αχb
*.
,

P(4)
nloc(r)

Pm
+ 4

P(3)
nloc

rPm
− 4

P′′nloc(r)

r2Pm

+/
-
=

l2

r2
. (B1)

The solution of this equation has already been studied in a pre-
vious study,13 and we only give the main steps to obtain it.

Using the potential ψ(r) such as P(r) = dψ(r)/dr and writing the
linearised equation in Fourier space, one obtains

ψ̃(q) =
e

q2
(
2γP2

m + κlq2 + αq4
,

=
e
q2
χ
‖ lin (q). (B2)

The expression of the potential ψ(r) in real space is then

ψ(r) = −χb
e

4πr
+

1
4πrα

λeλo(
1
λ2
o
− 1
λ2
e

)2
+ 2
λ2
eλ

2
o

e−r/λe

×

(
2

λ2
eλ

2
o

cos(r/λo) +
(

1
λ2
o
−

1
λ2
e

)
sin(r/λo)

)
, (B3)

where λe and λo are the decay and the oscillation length of the
dielectric response of the medium and are equal to

λe =

√
2

q0

√
1/
√
ζ − 1

, λo =

√
2

q0

√
1/
√
ζ + 1

, (B4)

with q2
0 = κl/2α and ζ = αq4

0χb.
The linear nonlocal polarisation vector field Pnloc owing to

the ion is then equal to

Pnloc(r) =
−→
∇ψ(r), (B5)

which tends to P(r) = χbDion(r) for r � λe. λe is equal to 0.4 nm
for the set of parameters reproducing water properties.

APPENDIX C: POWER EXPANSION OR BORN
EXPANSION OF THE MEAN-FIELD POLARISATION

We first recall that in general for an equation of the form

L[P](x) = f(x), (C1)

with L[·] as a linear operator, one can express the solution to
be

P(x) =
∫

G(x, x′)f(x′) dx′, (C2)

where G(x, x′) is the Green function associated with L[·] satis-
fying

L[G](x, x′) = δ(x − x′). (C3)

The general one-dimensional mean field equation in Eq. (20)
of the main text can be recast in the form

2γP3(x) + L[P](x) = D(x), (C4)

with L[P](x) ≡ ∫ dy M−1
‖ x,yP(y) for which we know the Green

function to be χ
‖ lin (x − x′) [cf. Eq. (12)]. Moving the nonlinear

term on the right hand side gives rise to a recursive equation
which leads to a natural expansion of the solution sometimes
referred to as the Born expansion,41
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P(x) =
∫

dx1 χ‖ lin (x − x1)(D(x1) − 2γP3(x1))

=

∫
dx1 χ‖ lin (x − x1)


D(x1) +

− 2γ*
,

∫
dx2 χ‖ lin (x1 − x2)(D(x2) + 2γP3(x2))+

-

3
O(D3)
=

∫
dx1 χ‖ lin (x − x1)D(x1) −

∫
dx1 χ‖ lin (x − x1)

× 2γ*
,

∫
dx2 χ‖ lin (x1 − x2)D(x2)+

-

3

. (C5)

Using the result from Eq. (18), it becomes

P(x) = χ
‖ lin (q)D0 cos(qx) − 2γ

∫
dx1χ‖ lin (x − x1)χ‖ lin (q)3D3

0 cos3(qx)

= D0χ‖ lin (q) cos(qx) − 2γD3
0

(
3χ

‖ lin (q)4 cos(qx)

+ χ
‖ lin (q)3χ

‖ lin (3q)
)
. (C6)
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