60 Page 25 of 36 Management Decision 4 Acharya, A., Singh, S.K., Pereira, V., and Singh, P. (2018), “Big data, knowledge co-creation 6 and decision making in fashion industry”, International Journal of Information 8 Management, Vol.42, pp.90-101. 11 Al Nuaimi, E., Al Neyadi, H., Mohamed, N., and Al-Jaroodi, J. (2015), “Applications of big 13 data to smart cities”, Journal of Internet Services and Applications, Vol.6, No.1, pp.1 15 25. Ma Akter, S., Wamba, S.F., Gunasekaran, A., Dubey, R., and Childe, S.J. (2016), “How to improve 20 firm performance using big data analytics capability and business strategy alignment?”, n 22 International Journal of Production Economics, Vol.182, pp.113-131. ag Braganza, A., Brooks, L., Nepelski, D., Ali, M., and Moro, R. (2017), “Resource management em 27 in big data initiatives: Processes and dynamic capabilities”, Journal of Business 29 Research, Vol.70, pp.328-337.en 31 Bresciani, S., Ferraris, A., and Del Giudice, M. (2017), “The management of organizational 34 ambidexterity through alliances in a new context of analysis: Internet of Things (IoT) tD 36 smart city projects”, Technological Forecasting and Social Change. DOI: ec https://doi.org/10.1016/j.techfore.2017.03.002 Chae, B.K. (2015), “Big data and IT-enabled services: ecosystem and coevolution”, IT isi 43 Professional, Vol.2, pp.20-25. on 45 Caputo, A., Marzi, G., Pellegrini, M.M., and Rialti, R. (2018), “Conflict Management in 47 Family Businesses: A Bibliometric Analysis and Systematic Literature Review”, 50 International Journal of Conflict Management. DOI: 10.1108/IJCMA-02-2018-0027 52 Chaffin, D., Heidl, R., Hollenbeck, J.R., Howe, M., Yu, A., Voorhees, C., and Calantone, R. 54 (2017), “The promise and perils of wearable sensors in organizational research”, 57 Organizational Research Methods, Vol.20, No.1, pp.3-31. 60 Management Decision Page 26 of 36 4 Chen, H., Chiang, R.H.L., and Storey, V.C. (2012), “Business Intelligence and Analytics: From 6 Big Data to Big Impact”, MIS Quarterly, Vol.36, No.4, pp.1165-1188. 8 Chen, J., Chen, Y., Du, X., Li, C., Lu, J., Zhao, S., and Zhou, X. (2013), “Big data challenge: 11 a data management perspective”, Frontiers of Computer Science, Vol.7, No.2, pp.157 13 164. 15 Chen, M., Mao, S., and Liu, Y. (2014), “Big data: A survey”, Mobile networks and Ma applications, Vol.19, No.2, pp.171-209. 20 Chen, D.Q., Preston, D.S., and Swink, M. (2015), “How the use of big data analytics affects n 22 value creation in supply chain management”, Journal of Management Information ag Systems, Vol.32, No.4, pp.4-39. em 27 Contractor, F., Yang, Y., and Gaur, A. S. (2016), “Firm-specific intangible assets and 29 subsidiary profitability: The moderating role of distance, ownership strategy and en 31 subsidiary experience”, Journal of World Business, Vol.51, No.6, pp.950-964. 34 Côrte-Real, N., Oliveira, T., and Ruivo, P. (2017), “Assessing business value of Big Data tD 36 Analytics in European firms”, Journal of Business Research, Vol.70, pp.379-390. ec Del Giudice, M. (2016), “Discovering the Internet of Things (IoT) within the business process management: A literature review on technological revitalization”, Business Process isi 43 Management Journal, Vol.22, No.2, pp.263-270. on 45 Dobrzykowski, D.D., Leuschner, R., Hong, P.C., and Roh, J.J. (2015), “Examining absorptive 47 capacity in supply chains: Linking responsive strategy and firm performance”, Journal 50 of Supply Chain Management, Vol.51, No.4, pp.3-28. 52 Dubey, R., Gunasekaran, A., and Childe, S. J. (2018), “Big data analytics capability in supply 54 chain agility: The moderating effect of organizational flexibility”, Management 57 Decision, DOI: https://doi.org/10.1108/MD-01-2018-0119 60 Page 27 of 36 Management Decision 4 Eisenhardt, K.M., and Martin, J.A. (2000), “Dynamic capabilities: what are they?”, Strategic 6 Management Journal, Vol.21, No.11, pp.1105-1121. 8 El-Kassar, A.N., and Singh, S.K. (2018), “Green innovation and organizational performance: 11 the influence of big data and the moderating role of management commitment and HR 13 practices”, Technological Forecasting and Social Change, DOI: 15 https://doi.org/10.1016/j.techfore.2017.12.016 Ma Erevelles, S., Fukawa, N., and Swayne, L. (2016), “Big Data consumer analytics and the 20 transformation of marketing”, Journal of Business Research, Vol.69, No.2, pp.897-904. n 22 Falagas, M.E., Pitsouni, E.I., Malietzis, G.A. and Pappas, G. (2008), “Comparison of PubMed, ag Scopus, web of science, and google scholar: strengths and weaknesses”, The FASEB em 27 Journal, Vol.22 No.2, pp.338-342. 29 Fawcett, S.E., and Waller, M.A. (2014), “Supply chain game changers—mega, nano, and en 31 virtual trends—and forces that impede supply chain design (ie, building a winning 34 team)”, Journal of Business Logistics, Vol.35, No.3, pp.157-164. tD 36 Ferraris, A., Mazzoleni, A., Devalle, A., and Couturier, J. (2018), “Big data analytics ec capabilities and knowledge management: impact on firm performance”, Management Decision, DOI: https://doi.org/10.1108/MD-07-2018-0825isi 43 Frisk, J. E., and Bannister, F. (2017), “Improving the use of analytics and big data by changing on 45 the decision-making culture: A design approach”, Management Decision, Vol.55, 47 No.10, pp.2074-2088. 50 Fuchs, M., Höpken, W., and Lexhagen, M. (2014), “Big data analytics for knowledge 52 generation in tourism destinations-A case from Sweden”, Journal of Destination 54 Marketing & Management, Vol.3, No.4, pp.198-209. 60 Management Decision Page 28 of 36 4 Gandomi, A., and Haider, M. (2015), “Beyond the hype: Big data concepts, methods, and 6 analytics”, International Journal of Information Management, Vol.35, No.2, pp.137 8 144. 11 Gani, A., Siddiqa, A., Shamshirband, S., and Hanum, F. (2016), “A survey on indexing 13 techniques for big data: taxonomy and performance evaluation”, Knowledge and 15 Information Systems, Vol.46, No.2, pp.241-284. Ma Gaur, A.S., Kumar, V., and Singh, D. (2014), “Institutions, resources, and internationalization 20 of emerging economy firms”, Journal of World Business, Vol.49, No.1, pp.12-20. n 22 Gaur, A., and Kumar, M. (2018), “A systematic approach to conducting review studies: An ag assessment of content analysis in 25years of IB research”, Journal of World Business, em 27 Vol.53, No.2, pp.280-289. 29 Gunasekaran, A., Yusuf, Y.Y., Adeleye, E.O., and Papadopoulos, T. (2018), “Agile en 31 manufacturing practices: the role of big data and business analytics with multiple case 34 studies”, International Journal of Production Research, Vol.56, No.1-2, pp.385-397. tD 36 Hazen, B.T., Boone, C.A., Ezell, J.D., and Jones-Farmer, L.A. (2014), “Data quality for data ec science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications”, International Journal of isi 43 Production Economics, Vol.154, pp.72-80. on 45 Hwang, P., and Gaur, A. S. (2009), “Organizational efficiency, firm capabilities, and economic 47 organization of MNEs”, Multinational Business Review, Vol.17, No.3, pp.143-162. 50 Kache, F., and Seuring, S. (2017), “Challenges and opportunities of digital information at the 52 intersection of Big Data Analytics and supply chain management”, International 54 Journal of Operations & Production Management, Vol.37, No.1, pp.10-36. 57 Khan, Z. and Vorley, T. (2017), “Big data text analytics: an enabler of knowledge 59 management”, Journal of Knowledge Management, Vol.21, No.1, pp.18-34. 60 Page 29 of 36 Management Decision 4 Kowalczyk, M., and Buxmann, P. (2015), “An ambidextrous perspective on business 6 intelligence and analytics support in decision processes: Insights from a multiple case 8 study”, Decision Support Systems, Vol.80, pp.1-13. 11 Kwon, O., and Sim, J.M. (2013), “Effects of data set features on the performances of 13 classification algorithms”, Expert Systems with Applications, Vol.40, No.5, pp.1847 15 1857. Ma Kwon, O., Lee, N., and Shin, B. (2014), “Data quality management, data usage experience and 20 acquisition intention of big data analytics”, International Journal of Information n 22 Management, Vol.34, No.3, pp.387-394. ag Labrinidis, A., and Jagadish, H.V. (2012), “Challenges and opportunities with big data”, em 27 Proceedings of the VLDB Endowment, Vol.5, No.12, pp.2032-2033. 29 LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011), “Big data, en 31 analytics and the path from insights to value”, MIT Sloan Management Review, 52(2), 34 21. tD 36 Lavertu, S. (2016), “We all need help: “Big data” and the mismeasure of public ec administration”, Public Administration Review, Vol.76, No.6, pp.864-872. Lee, I. (2017), “Big data: Dimensions, evolution, impacts, and challenges”, Business Horizons, isi 43 Vol.60, No.3, pp.293-303. on 45 Li, X., Song, J., and Huang, B. (2016), “A scientific workflow management system architecture 47 and its scheduling based on cloud service platform for manufacturing big data 50 analytics”, The International Journal of Advanced Manufacturing Technology, Vol.84, 52 No.1-4, pp.119-131. 54 McAfee, A. and Brynjolfsson, E. (2012), “Big Data: The Management Revolution”, Harvard 57 Business Review, Vol.90, No.10, pp.60-68. 60 Management Decision Page 30 of 36 4 Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., and Byers, A. H. (201 6 1), “Big Data: The Next Frontier for Innovation, Competition, and Productivity”, 8 McKinsey Global Institute 11 (http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/big_dat13 a_the_next_frontier_for_innovation ). Accessed June 4th, 2018. 15 Martin, K.D., Borah, A., and Palmatier, R.W. (2017), “Data privacy: Effects on customer and Ma firm performance”, Journal of Marketing, Vol.81, No.1, pp.36-58. 20 Marzi, G., Rialti, R., Marina, D., and Caputo, A. (2018), “A mixed methods bibliometric n 22 investigation of the World Review of Entrepreneurship, Management and Sustainable ag Development: from qualitative to quantitative data”, World Review of em 27 Entrepreneurship, Management and Sustainable Development. Link: 29 http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=wremsden 31 Mishra, D., Luo, Z., Jiang, S., Papadopoulos, T., and Dubey, R. (2017), “A bibliographic study 34 on big data: concepts, trends and challenges”, Business Process Management Journal, tD 36 Vol.23, No.3, pp.555-573. ec Mishra, D., Luo, Z., Hazen, B., Hassini, E., and Foropon, C. (2018), “Organizational capabilities that enable big data and predictive analytics diffusion and organizational isi 43 performance: A resource-based perspective”, Management Decision, DOI: on 45 https://doi.org/10.1108/MD-03-2018-0324 47 Nguyen, H. T. H., and Cao, J. (2015), “Trustworthy answers for top-k queries on uncertain Big 50 Data in decision making”, Information Sciences, Vol.318, pp.73-90. 52 Nuruzzaman, N., Gaur, A.S., and Sambharya, R.B. (2018), “A microfoundations approach to 54 studying innovation in multinational subsidiaries”, Global Strategy Journal. DOI: 57 https://doi.org/10.1002/gsj.1202 60 Page 31 of 36 Management Decision 4 Opresnik, D., and Taisch, M. (2015), “The value of big data in servitization”, International 6 Journal of Production Economics, Vol.165, pp.174-184. 8 Papadopoulos, T., Gunasekaran, A., Dubey, R., Altay, N., Childe, S.J., and Wamba, S.F. 11 (2017), “The role of Big Data in explaining disaster resilience in supply chains for 13 sustainability”, Journal of Cleaner Production, Vol.142, pp.1108-1118. 15 Popli, M., Ladkani, R.M., and Gaur, A. S. (2017), “Business group affiliation and post Ma acquisition performance: An extended resource-based view”, Journal of Business 20 Research, Vol.81, pp.21-30. n 22 Prescott, M. (2014), “Big data and competitive advantage at Nielsen”, Management Decision, ag Vol.52, No.3, pp.573-601.em 27 Rialti, R., Marzi, G., Silic, M., and Ciappei, C. (2018), “Ambidextrous organization and agility 29 in big data era: the role of business process management systems”, Business Process en 31 Management Journal. DOI: https://doi.org/10.1108/BPMJ-07-2017-021 34 Sivarajah, U., Kamal, M. M., Irani, Z., and Weerakkody, V. (2017), “Critical analysis of Big tD 36 Data challenges and analytical methods”, Journal of Business Research, Vol.70, pp. ec 263-286. Tallon, P.P., Ramirez, R.V., and Short, J.E. (2013), “The information artifact in IT governance: isi 43 toward a theory of information governance”, Journal of Management Information on 45 Systems, Vol.30, No.3, pp.141-178. 47 Teece, D.J. (2009), Dynamic Capabilities and Strategic Management: Organizing for 50 Innovation and Growth, Oxford University Press: Oxford (UK). 52 Teece, D. J., Pisano, G., and Shuen, A. (1997), “Dynamic capabilities and strategic 54 management”, Strategic Management Journal, Vol.18, No.7, pp.509-533. 60 Management Decision Page 32 of 36 4 Tirunillai, S., and Tellis, G. J. (2014), “Mining marketing meaning from online chatter: 6 Strategic brand analysis of big data using latent dirichlet allocation”, Journal of 8 Marketing Research, Vol.51, No.4, pp.463-479. 11 Tranfield, D., Denyer, D., and Smart, P. (2003), “Towards a methodology for developing 13 evidence‐informed management knowledge by means of systematic review”, British 15 Journal of Management, Vol.14, No.3, pp.207-222. Ma Van Eck, N.J. and Waltman, L. (2010), “Software Survey: Vosviewer, A Computer Program 20 for Bibliometric Mapping”, Scientometrics, Vol.84, No.2, pp.523-538. n 22 Vera-Baquero, A., Colomo-Palacios, R., and Molloy, O. (2013), “Business process analytics ag using a big data approach”, IT Professional, Vol.15, No.6, pp.29-35. em 27 Vera-Baquero, A., Colomo-Palacios, R., and Molloy, O. (2016), “Real-time business activity 29 monitoring and analysis of process performance on big-data domains”, Telematics and en 31 Informatics, Vol.33, No.3, pp.793-807. 34 Vera-Baquero, A., Colomo Palacios, R., Stantchev, V., and Molloy, O. (2015), “Leveraging tD 36 big-data for business process analytics”, The Learning Organization, Vol.22, No.4, pp ec 215-228. Wamba, S.F., and Mishra, D. (2017), “Big data integration with business processes: a literature isi 43 review”, Business Process Management Journal, Vol.23, No.3, pp.477-492. on 45 Wamba, S.F, Gunasekaran, A., Akter, S., Ren, S. J. F., Dubey, R., and Childe, S.J. (2017), “Big data analytics and firm performance: Effects of dynamic capabilities”, Journal of 50 Business Research, Vol.70, pp.356-365. 52 Wu, K.J., Liao, C.J., Tseng, M.L., Lim, M.K., Hu, J., and Tan, K. (2017), “Toward 54 sustainability: using big data to explore the decisive attributes of supply chain risks and 57 uncertainties”, Journal of Cleaner Production, Vol.142, pp.663-676. 60 Page 33 of 36 Management Decision 4 Xuemie, T. (2017), “Big data and knowledge management: a case of déjà vu or back to the 6 future?”, Journal of Knowledge Management, Vol.21, No.1, pp.113-131. 8 Yang, Y., Pan, B., and Song, H. (2014), “Predicting hotel demand using destination marketing 11 organization's web traffic data”, Journal of Travel Research, Vol.53, No.4, pp.433 13 447. 15 Zeng, J., and Khan, Z. (2018), “Value creation through big data in emerging economies: The Ma role of resource orchestration and entrepreneurial orientation”, Management Decision, 20 DOI: https://doi.org/10.1108/MD-05-2018-0572 n 22 Zhou, Z.H., Chawla, N.V., Jin, Y., and Williams, G.J. (2014), “Big data opportunities and ag challenges: Discussions from data analytics perspectives [discussion forum]”, IEEE em 27 Computational Intelligence Magazine, Vol.9, No.4, pp.62-74. en tD ec isi on 60 Management Decision Page 34 of 36 3 Tables 6 Table 1 - Number of Papers among the Years 8 Year Number of Papers % Variation 9 2012 2 - 2013 7 +250,00% 12 2014 14 +100,00% 13 2015 23 +64,29% 14 2016 30 +30,43% 2017 94 +213,33% 17 Total Papers 170 Ma 19 Source: Authorsélaboration n 23 Figures ag