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Abstract: In this paper, the validity of the state-space 
averaging method is analyzed. We assume that the 
state-space piecewise method is an exact model for a 
fast switching circuit. Based on this model, we compute 
the error predicted by the state-space averaging method. 
It is found that the error for a polynomial input is 
bounded by two polynomials with the same order as that 
of the input. And the percentage error is bounded by a 
constant. Hence, if the acceptable level is within that 
constant, then the state-space averaging method can be 
applied. Similar analysis is carried out on a 
non-polynomial input. A sinusoidal function is chosen 
because of its wide applications on AC circuits. 
Although a similar result is obtained, the percentage 
error for the sinusoidal input is much greater than that of 
the polynomial input. Hence, the state-space averaging 
method may not be so good for the AC analysis. 
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I. INTRODUCTION 
 
 Switching circuits are playing an increasingly 
important role in power electronics in this decade [1]. 
Since they are non-linear and time-varying in nature due 
to the non-zero initial energy stored in the circuit 
elements and the changing status of switches, some 
traditional methods, such as impulse response and 
frequency response, cannot be readily applied to analyze 
them. 

In order to work on this problem, a state-space 
averaging method has been proposed [2]. There are lots 
of advantages for employing this method. Since it 
involves only a first order differential vector equation, 
the state vector function and the output function can be 
computed implicitly at any instant easily. Also, as the 
computation complexity is low, it is good for simulation. 
However, the prediction error introduced by it may 
cause some faults in analysis and design. 

A state-space piecewise method has been 
proposed for analyzing the switching circuits [3]. 
However, iterations are required to compute the state 

vector function and the output function. It takes a very 
long time to reach the steady state and the simulation 
complexity is very high. 

Some numerical methods have been proposed to 
speed up the state-space piecewise method [4]. However, 
the assumptions made and the approximations taken are 
sometimes invalid and inappropriate, and these may 
lead to significant prediction error. 

In this paper, the state-space averaging method 
and the state-space piecewise method are reviewed in 
section II and section III, respectively. The errors 
predicted by the state-space averaging method for the 
polynomial input and the sinusoidal input are discussed 
in section IV and section V, respectively. Finally, 
simulation results and concluding remarks are given in 
section VI and section VII, respectively. 
 

II. REVIEW ON STATE-SPACE AVERAGING 
METHOD 

 
Assume that a switching circuit consists of two 

topologies, topology I and topology II, and the duty 
cycle at each topology is 50%. If A1, B1, C1 and D1 are 
the matrices of a state-space representation of the circuit 
at the topology I and A2, B2, C2 and D2 are that at the 
topology II, then the ‘average’ state-space representation 
of the whole circuit is: 
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The state vector function and the output function of the 
system are: 
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respectively, for tt0, where x(t0) is the initial condition 
of the state vector at t=t0 and u(t) is the input of the 
system. For simplicity, assume that A is an NxN matrix 
with distinct eigenvalues i, for i=1,2,…,N, respectively. 
Apply the Cayley Hamilton expansion to the matrix 
exponential terms in equation (2), that is: 
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Then the state vector function and the output function 
become: 
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respectively. If the eigenvalues are not distinct, similar 
results are obtained. 
 

III. REVIEW ON STATE-SPACE PIECEWISE 
METHOD 

 
For simplicity, under the same assumptions made 

in section II, if A1 and A2 are NxN matrices with distinct 
eigenvalues i and i’, for i=1,2,…,N, respectively, then 
the state vector function and the output function are: 
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respectively, for t0+nTs t  t0+(n+0.5)Ts, and 
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respectively, for t0+(n+0.5)Ts t  t0+(n+1)Ts, where 
Ts is the switching period, n=0,1,2,, 
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IV. ERROR PREDICTED BY THE 

STATE-SPACE AVERGING METHOD FOR A 
POLYNOMIAL INPUT 

 
There are many applications of building a 

switching circuit using a polynomial input. For example, 
a DC-DC converter is a switching circuit using the step 
input [5]. It can be seen from equation (5) that the input 
affects the output only through the following integration 
term: 
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State-space averaging method 
If the input is a polynomial function of time, then 

we can compute the integral of (10) at the switching 
instants using the following formula: 
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By substituting equation (11) into equation (5), the state 
vector function and the output function at the switching 
instants are: 
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respectively. 
 Although equation (12) appears to be quite 
complicated, the state vector can be written as the sum 
of the zero-input response F0(n)x(t0) and the zero-state 
response F1(n)g0(t0)+F2(n)g1(t0+nTs), as follows: 
             (13), 012001000 ss TntgnFtgnFtxnFTntx   

where g0(t0) and g1(t0+nTs) correspond to the kth order 
polynomial functions of t0 and t0+nTs, respectively. 
And the output is: 
              (14).  012001000 ss TntgnFtgnFtxnFTnty   

State-space piecewise method 
Similar to the state-space averaging method, the 

corresponding integration terms at the switching instants 
can be computed by the following formulae: 
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respectively. The state vector function and the output 
function at the switching instants are: 
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respectively, where 
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By solving the difference equation (16), the state vector 
function and the output function at the switching 
instants can be expressed as: 
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respectively. Similarly, the state vector in equation (18) 
can be written as a sum of the zero-input response 
E0(n)x(t0) and the zero-state response 
E1(n)f0(t0)+E2(n)f1(t0+0.5Ts)+…+E2n+1(n)f2n(t0+nTs), 
as follows: 
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where fp(t0+pTs/2) correspond to the kth order 
polynomial function of t0+pTs/2. And the output is: 
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Error equations 
From equations (13), (14), (19) and (20), the 

prediction errors are: 
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respectively. As hp(t0+tTs/2) is a polynomial with the 
same order as that of the input, the error is bounded by 
two characteristic polynomials of the same order as that 
of the input. 

The percentage errors are: 
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respectively. Since the numerator and the denominator 
are of the same order, the steady-state value is bounded 
by a constant. 
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V. EFFECT OF NON-POLYNOMIAL INPUT 
 

In many cases, the input cannot be assumed to be 
a polynomial function of time. The most common type 
of a non-polynomial input is a periodic signal, which is 
made up of harmonically related sinusoids. Hence, the 
sinusoidal input is addressed in this paper. 
State-space averaging method 

The integral of (10) can be computed by: 
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The state vector function and the output function 
computed at the switching instants are: 
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respectively, where 

 

 

 

(25).                               
1

1

1

1

1

1 1
2

2
2

1
0

1 1

2

2
1

0

1 1

2

2
2

1
0

1 1

2

2

1
0

1 1

1
0











 



 



 




 




 






























































N

j

N

i

i
i

j
ji

N

j

N

i

i
i

j
ji

N

j

N

i

i
i

Tn
j

ji

N

j

N

i

i
i

Tn
j

ji

N

j

N

i

jTn
ji

BAaU

BAaU

eBAanT

eBAanT

AeanS

si

si

si



























,

,

,

,

 

The state vector function can be realized as the 
sum of the zero input response S0(n)x(t0) and the zero 
state response as 
T0(n)sin(t0)+T’0(n)cos(t0)-U0sin((t0+nTs))-U’0
cos((t0+nTs)). 
State-space piecewise method 

The integral of (10) can be computed by: 
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respectively, the state vector function and the output 
function computed at the switching instant are: 
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(28).                             
1

1

1

1

1

1

1

1

1

1 1

2

2
2

2
1

22

1 1
2

22
1

21

1 1
2

2
2

2

2
1

22

1 1

2

2

2

2
1

21

1 1

1
2

2
2

1 1

2

2
2

1
1

12

1 1

2

21
1

11

1 1
2

2
2

2

1
1

12

















 



 



 





 





 




 



 



 



















































































































N

j

N

i

i
i

j
ji

N

j

N

i

i
i

j
ji

N

j

N

i

i
i

T

j
ji

N

j

N

i

i
i

T

j
ji

N

j

N

i

j
T

ji

N

j

N

i

i
i

j
ji

N

j

N

i

i
i

j
ji

N

j

N

i

i
i

T

j
ji

BAaU

BAaU

eBAaT

eBAaT

AeaS

BAaU

BAaU

eBAaT

si

si

si

si












































,

,

,

,

,

,

,

 

By solving the difference equation (27), we have: 
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respectively. 
Error equations 

From equations (24) and (29), the prediction 

errors are: 
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respectively. If G0(n) and G’0(n) converge to a constant, 
then the error at the steady state can be approximately 
by the sinusoids with a DC offset. That is: 
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From equation (31), the error is mainly 
contributed by the phase shift and the amplitude of the 
sinusoids, which may be significant. 
 

VI. SIMULATION RESULTS 
 

Figure 1 shows a schematic example of a 
switching circuit [5]. Figure 2 and figure 3 show the 
output of the circuit predicted by the state-space 
averaging method and the state-space piecewise method 
for different polynomial inputs, respectively. Figure 4 
and figure 5 show the corresponding prediction error 
and the percentage error. 

Figure 6 and figure 7 show the output predicted 
by the state-space averaging method and the state-space 
piecewise method for a sinusoidal input, respectively. 
Figure 8 and figure 9 show the corresponding prediction 
error and the percentage error. 
 

VII. CONCLUDING REMARKS 
 

The validity of the state-space averaging method 
is studied in this paper. It is found that, in general, the 
state-space averaging approach is applicable as a useful 
tool for the analysis and design of switching circuits 
with polynomial input, e.g., DC-DC converter. However, 
it may not provide an appropriate model for the analysis 
and design for non-polynomial input systems, e.g., 
AC-AC converter, as the prediction error terms are to be 
quite large. 
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Fig. 1. Schematic example of a switching circuit 
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Fig. 9. Percentage Error Voltage for Sinusoidal Input 
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Fig 4. Error predicted by the state-space averaging method 
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Fig 2. Output predicted by the state-space averaging method 
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Fig 3. Output predicted by the state-space piecewise method 
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Fig. 5. Percentage Error Voltage for Polynomial Inputs 
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