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SUMMARY  

In this article, the second order digital filter with two’s complement arithmetic in [1] 

is considered. Necessary conditions for the symbolic sequences to be periodic after a 

number of iterations are given when the filter parameters are at 1 ab  and 

1 ab . Furthermore, for some particular values of a, even when one of the 

eigenvalues is outside the unit circle, the system may behave as a linear system after a 

number of iterations and the state vector may toggle between two states or converge 

to a fixed point at the steady state. The necessary and sufficient conditions for these 

phenomena are given in this article. 
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1.  INTRODUCTION 

A nonlinear behavior may occur on a second order digital filter when the filter is 

implemented using a two’s complement arithmetic for the addition operation. To 

analyze such a behavior, a symbolic analysis was proposed and the admissibility of 

the symbolic sequences was studied for the special case when b=-1 and |a|<2 [1-4, 7]. 

However, even when the symbolic sequence is admissible, there are many 

possibilities. In order to study the various possibilities, the set of admissible 

sequences can be partitioned into three subsets: One set contains periodic symbolic 

sequences. The second set contains symbolic sequences that are periodic after a 

number of iterations. The third set contains symbolic sequences that are never 

periodic. Some results on the first two sets were obtained for b=-1 and |a|<2 [1-4, 7]. 

These results have been extended for other real values of a, while the value of b is still 

equal to –1 [5]. 

However, will those existing results remain valid if the filter parameter 1b ? 

Specifically, we are interested in the nonlinear behavior which may occur when 

1 ab  and 1 ab , and the answer to the following questions: Under what 

conditions will the symbolic sequence be periodic? If the symbolic sequence is 

periodic, under what conditions will the system behave as a linear system after a 

number of iterations and the state vector toggles among several states or converges to 

a fixed point? In this article, we focus on both the cases of 1 ab  and 1 ab . 

In section 2, we will present the notations used in the existing literatures [1-7], and 

this article will also employ the same set of notations. In section 3, some new results 

on the above problems are presented. Finally, a conclusion is summarized in section 

4. 
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2.  NOTATIONS 

The notations used in [1-7] are adopted as follows: 

The system is defined as: 

 
 

 
 

 
    

 
  ks
kx
kx

kxakxbf
kx

kx
kx

kx
kx
















































BA
2

1

21

2

2

1

2

1 F
1
1

 (1) 
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 mmsk  ,1,0,1,,   where m is the minimum integer satisfying 

1212 21  mxaxbm  (5) 

and   nxxf  2  such that 1212  nxn  and  0Ζ n  (6) 
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The set  can be partitioned into three subsets:   periodic is :210 sssss  , 

  iterations ofnumber  aafter  periodic is :210 sssss   and 

   \ . 
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3. NEW RESULTS FOR THE PERIODIC SYMBOLIC SEQUENCES 

This section presents several conditions for the state vector to be periodic after a 

number of iterations. These conditions can be stated in the following lemmas, 

theorems and remarks, where the stability of these periodic orbits is stated in the 

observations: 

Lemma 1 
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Proof 

For 1 ab , the nonlinear system in (1) can be represented by the state equation 
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Hence, 
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Let 
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Then we have: 
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Remark 1 

If, after a number of iterations, the state vector is periodic with period M, then the 

symbolic sequence will also be periodic with the same period, that is, s . Hence, 

this lemma gives a necessary condition for a symbolic sequence to be periodic after a 

number of iterations. 

However, ks  is an integer in  mm  ,1,0,1,,   and the periodicity of the 

symbolic sequence is M. So there are  Mm 12   possibilities. In the following 
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theorem, the case of 0ks  for 0kk   is discussed. 

Theorem 1 

For 1 ab  and 11 a , 0ks  for 0kk   if and only if  0Ζ0 k  such 

that    0201 kxkx  . 
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For the if part, since 1 ab  and 0ks  for 0kk  , we have: 

 
 

               
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01 kxkxa kk    diverges as k  if 
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 
 

 
      

 
  





 
























01

01

0101

01

02

01

11
1

kxf
kx

kxakxaf
kx

kx
kx

. Since   101 kx , we have 

 
 

 
  


















01

01

02

01

1
1

kx
kx

kx
kx

 and 0
0
ks . 

Similarly, we have 
 
 

 
 



















01

01

02

01

2
2

kx
kx

kx
kx

 and 010
ks . Since 

 
 

 
 


















02

01

02

01

2
2

kx
kx

kx
kx
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Remark 2 

The eigenvalues of matrix A is 1  and 1a . Since 11 a , one of the 
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eigenvalues is outside the unit circle. However, the system may behave as a linear 

system when 0ks  for 0kk  . Theorem 1 gives the necessary and sufficient 

condition for the nonlinear system to behave as a linear system after a number of 

iterations. It is interesting to note that the system may behave as a linear system after 

a number of iterations if and only if the state vector toggles between two points on a 

particular straight line of the phase portrait. 

Example 1 

Consider the system 
 
 

 
  ks
kx
kx

kx
kx





















BA
2

1

2

1

1
1

, where 










aa 1
10

A , 









2
0

B , 

3a  and 
 
  


















5377.0

9003.0
0
0

2

1

x
x

. Figure 1 shows the phase portrait of the system. It 

can be seen from the figure that the state vector toggles between two states at the 

steady state on a particular straight line 21 xx   of the phase portrait. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1. The phase portrait of the second order digital filter with two’s complement arithmetic. The 
points x(0), x(1), x(2) are as annotated, and the points with ‘*’ denote the ‘steady states’ of x. 
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x2 

x(0) 

x(1) 
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We have discussed the case when 0ks  for 0kk   in theorem 1. What happens 

when 0ks  for 0kk  ? We will present an interesting result in the following 

theorem: 

Theorem 2 

For 1 ab  and a being an odd integer,  0Ζ0 k  such that 

    10201  kxkx  if and only if ask   and 
 
 

 
 
















02

01

2

1

kx
kx

kx
kx

 for 0kk  . 

Proof 

For the if part, since 
 
 

 
      



















0201

02

02

01

11
1

kxakxaf
kx

kx
kx

, if  0Ζ0 k  

such that     10201  kxkx , then we have 
 
    





















12
1

1
1

02

01

afkx
kx

. Since a 

is an odd integer, we have 
 
  






















1
1

1
1

02

01

kx
kx

 and ask 
0

. As 

 
 

 
  































1
1

1
1

02

01

02

01

kx
kx

kx
kx

, we have ask   and     121  kxkx  for 0kk  . 

For the only if part, since 
 
 

 
      



















0201

02

02

01

11
1

kxakxaf
kx

kx
kx

, if 

   011 kxkx   and    022 kxkx   for 0kk  , then we have 

 
 

 
      

















0201

02

02

01

1 kxakxaf
kx

kx
kx

, which implies    0201 kxkx   and 

        020102 1 kxakxafkx  . Since ask   for 0kk  , we have 

        akxakxakx  21 010101 , which implies    012 01  kxa . As a is an 

odd integer, so 0a . As a result, we have   101 kx  and we prove the only if part. 

Remark 3 
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Theorem 2 states the necessary and sufficient condition for the state vector to stay at a 

fixed point after a number of iterations when the parameter a is an odd integer. It is 

interesting to note that this fixed point is  1,1 . 

Example 2 

Consider the system 
 
 

 
  ks
kx
kx

kx
kx





















BA
2

1

2

1

1
1

, where 










aa 1
10

A , 









2
0

B , 

3a  and 
 
  


















25.0

1875.0
0
0

2

1

x
x

. Figure 2 shows the phase portrait of the system. It can 

be seen from the figure that the state vector converges to a fixed point 

 
  



















1
1

2

1

kx
kx

. 

 

 

 

 

 

 

 

 

 

 

 

 

Remark 4 

The above results are obtained when 1 ab . What happens when 1 ab ? We 

can show that results similar to lemma 1 and theorem 1 can be obtained as lemma 2 

-1 -0.
8 

-0.
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-0.
4 

-0.2 0 0.
2 

0.4 -1 

-0.9 

-0.8 

-0.7 

-0.6 

-0.5 

-0.4 

-0.3 

-0.2 

-0.1 

0 

x1 

x2 

Figure 2. The phase portrait of the second order digital filter with two’s complement arithmetic. The 
points x(0), x(1), x(2) are as annotated, and the point with ‘*’ denotes the ‘steady state’ of x. 

x(0) 

x(2) 

x(1) 
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and theorem 3, while the results of theorem 2 can be modified to that of theorem 4. 

Remark 5 

Since one of the eigenvalues is unstable, one may predict that the periodic orbits are 

unstable. However, a counter-intuitive result is found that the periodic orbits are 

stable if a is an odd integer. The result is stated in observation 1 below: 

Observation 1 

When 1 ab  and a is an odd integer, the state vector toggles between two states at 

the steady state on a particular straight line 21 xx   of the phase portrait or 

converges to a fixed point 












1
1

x  for all the initial conditions in 2I . 

To demonstrate this phenomenon, a random initial condition  0x  is generated in 

2I , it can be shown in figure 3a that the state converges to a period-2 signal. 

 

 

Figure 3a. The phase portrait of the second order digital filter with two’s complement arithmetic. The 
initial condition x(0)=[0.7826 0.5242]T is generated randomly. When a=5 and b=6, the state converges 

to a period-2 signal. 



 11 

However, when a  deviates from an odd integer a little bit, the state neither 

converges to a periodic signal nor a fixed point, as shown in figure 3b. 

 

 

Lemma 2 

For 1 ab , if  ΖM  such that 
 
 

 
 

















Mkx
Mkx

kx
kx

2

1

2

1  for 0kk  , then 

      
 

  012
1

20011
1

1
1

0
121

0

0

0











 











Mk

kj
j

jM
k

j
j

jM sa
a

s
xxa . 

Theorem 3 

For 1 ab  and 11 a , 0ks  for 0kk   if and only if  0Ζ0 k  such 

that    0201 kxkx  . 

Example 3 

Consider the system 
 
 

 
  ks
kx
kx

kx
kx





















BA
2

1

2

1

1
1

, where 










aa 1
10

A , 

Figure 3b. The phase portrait of the second order digital filter with two’s complement arithmetic. The 
initial condition is x(0)=[0.8 -0.7999]T, a=3.001 and b=4.001, the state neither converges to a periodic 

signal nor a fixed point. 
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









2
0

B , 3a  and 
 
  



















1234.0
1875.0

0
0

2

1

x
x

. Figure 4 shows the phase portrait of the 

system. It can be seen from the figure that the state vector converges to a fixed point 

on a particular straight line 21 xx   of the phase portrait. 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 4 

For 1 ab  and a being an odd integer, there does not exist Ζ0k  such that 

ask   for 0kk  . 

Proof 

Since 
 
 

 
  





 















 1
1

02

01

2

1

0

0

k

kj
j

jkkk s
kx
kx

kx
kx

BAA  for 0kk  , if ask   for 0kk  , 

we have: 

 
 

             

               



































































002010102
1

002010102

2

1

2
2

121
2
21

2
2
21

2
21

2
1

0

0

kka
a

aakxkxa
a
akxkxa

kka
a
akxkxa

a
akxkxa

akx
kx

kk

kk

 (19) 
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-0.8 

-0.6 

-0.4 

-0.2 
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0.2 

0.4 

0.6 

0.8 

1 

x1 

x2 

Figure 4. The phase portrait of the second order digital filter with two’s complement arithmetic. The 
points x(0), x(1), x(2) are as annotated, and the point with ‘*’ denotes the ‘steady state’ of x. 

x(0) 
x(1) 

x(2) 
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As k ,  0kk , so 
 
 

2

2

1lim I
kx
kx

k










. Hence, there does not exist 

Ζ0k  such that ask   for 0kk  , and this proves the theorem.  

Example 4 

Consider the system 
 
 

 
  ks
kx
kx

kx
kx





















BA
2

1

2

1

1
1

, where 










aa 1
10

A , 











2
0

B , 3a  and 
 
  

















5242.0
7826.0

0
0

2

1

x
x

. Figure 5 shows the phase portrait of the 

system. 

 

 

 

 

 

 

 

 

 

 

 

 

Observation 2 

When 1 ab  and a is an odd integer, the state vector converges to a fixed point 

on a particular straight line 21 xx   of the phase portrait for all the initial conditions 

in 2I . 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1 

-0.8 
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-0.4 

-0.2 
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0.4 

0.6 

0.8 

1 

x1 

x2 

Figure 5. The phase portrait of the second order digital filter with two’s complement arithmetic. The 
points x(0), x(1), x(2) are as annotated, and the point with ‘*’ denotes the ‘steady state’ of x. 

x(0) 

x(1) 

x(2) 
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To demonstrate this phenomenon, a random initial condition  0x  is generated in 

2I , it can be shown in figure 6a that the state converges to a fixed point. 

 

 

However, when a  deviates from an odd integer a little bit, the state does not 

converge to a fixed point, as shown in figure 6b. 

Figure 6a. The phase portrait of the second order digital filter with two’s complement arithmetic. The 
initial condition is x(0)=[-0.1886 0.87909]T, a=5 and b=-4, the state converges to a fixed point. 
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Figure 6b. The phase portrait of the second order digital filter with two’s complement arithmetic. The 
initial condition is x(0)=[0.5 0.5001]T, a=5.01 and b=-4.01, the state does not converge to a fixed point. 
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4.  CONCLUSIONS 

In this article, some interesting behaviors of second-order digital filters with two’s 

complement arithmetic are explored. The cases of 1 ab  and 1 ab  are 

analyzed and some necessary conditions for the symbolic sequences to be periodic 

after a number of iterations are given. The necessary and sufficient conditions for the 

system to behave as a linear system after a number of iterations and the state vector to 

toggle among several states or converge to a fixed point are given. 
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