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SUMMARY  

In this article, the second order digital filter with two’s complement arithmetic in [1] 

is considered. Necessary conditions for the symbolic sequences to be periodic after a 

number of iterations are given when the filter parameters are at 1 ab  and 

1 ab . Furthermore, for some particular values of a, even when one of the 

eigenvalues is outside the unit circle, the system may behave as a linear system after a 

number of iterations and the state vector may toggle between two states or converge 

to a fixed point at the steady state. The necessary and sufficient conditions for these 

phenomena are given in this article. 
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1.  INTRODUCTION 

A nonlinear behavior may occur on a second order digital filter when the filter is 

implemented using a two’s complement arithmetic for the addition operation. To 

analyze such a behavior, a symbolic analysis was proposed and the admissibility of 

the symbolic sequences was studied for the special case when b=-1 and |a|<2 [1-4, 7]. 

However, even when the symbolic sequence is admissible, there are many 

possibilities. In order to study the various possibilities, the set of admissible 

sequences can be partitioned into three subsets: One set contains periodic symbolic 

sequences. The second set contains symbolic sequences that are periodic after a 

number of iterations. The third set contains symbolic sequences that are never 

periodic. Some results on the first two sets were obtained for b=-1 and |a|<2 [1-4, 7]. 

These results have been extended for other real values of a, while the value of b is still 

equal to –1 [5]. 

However, will those existing results remain valid if the filter parameter 1b ? 

Specifically, we are interested in the nonlinear behavior which may occur when 

1 ab  and 1 ab , and the answer to the following questions: Under what 

conditions will the symbolic sequence be periodic? If the symbolic sequence is 

periodic, under what conditions will the system behave as a linear system after a 

number of iterations and the state vector toggles among several states or converges to 

a fixed point? In this article, we focus on both the cases of 1 ab  and 1 ab . 

In section 2, we will present the notations used in the existing literatures [1-7], and 

this article will also employ the same set of notations. In section 3, some new results 

on the above problems are presented. Finally, a conclusion is summarized in section 

4. 
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2.  NOTATIONS 

The notations used in [1-7] are adopted as follows: 

The system is defined as: 
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 mmsk  ,1,0,1,,   where m is the minimum integer satisfying 

1212 21  mxaxbm  (5) 

and   nxxf  2  such that 1212  nxn  and  0Ζ n  (6) 
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The set  can be partitioned into three subsets:   periodic is :210 sssss  , 

  iterations ofnumber  aafter  periodic is :210 sssss   and 

   \ . 
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3. NEW RESULTS FOR THE PERIODIC SYMBOLIC SEQUENCES 

This section presents several conditions for the state vector to be periodic after a 

number of iterations. These conditions can be stated in the following lemmas, 

theorems and remarks, where the stability of these periodic orbits is stated in the 

observations: 

Lemma 1 

For 1 ab , if  ΖM  such that 
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Proof 

For 1 ab , the nonlinear system in (1) can be represented by the state equation 
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If  ΖM  such that 
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Hence, 
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Let 
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For 2a , we have 31 tt  , that is: 
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Remark 1 

If, after a number of iterations, the state vector is periodic with period M, then the 

symbolic sequence will also be periodic with the same period, that is, s . Hence, 

this lemma gives a necessary condition for a symbolic sequence to be periodic after a 

number of iterations. 

However, ks  is an integer in  mm  ,1,0,1,,   and the periodicity of the 

symbolic sequence is M. So there are  Mm 12   possibilities. In the following 
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theorem, the case of 0ks  for 0kk   is discussed. 

Theorem 1 

For 1 ab  and 11 a , 0ks  for 0kk   if and only if  0Ζ0 k  such 

that    0201 kxkx  . 

Proof 

For the if part, since 1 ab  and 0ks  for 0kk  , we have: 
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Since 11 a ,       0201
01 kxkxa kk    diverges as k  if 
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Remark 2 

The eigenvalues of matrix A is 1  and 1a . Since 11 a , one of the 
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eigenvalues is outside the unit circle. However, the system may behave as a linear 

system when 0ks  for 0kk  . Theorem 1 gives the necessary and sufficient 

condition for the nonlinear system to behave as a linear system after a number of 

iterations. It is interesting to note that the system may behave as a linear system after 

a number of iterations if and only if the state vector toggles between two points on a 

particular straight line of the phase portrait. 

Example 1 

Consider the system 
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can be seen from the figure that the state vector toggles between two states at the 

steady state on a particular straight line 21 xx   of the phase portrait. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1. The phase portrait of the second order digital filter with two’s complement arithmetic. The 
points x(0), x(1), x(2) are as annotated, and the points with ‘*’ denote the ‘steady states’ of x. 
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We have discussed the case when 0ks  for 0kk   in theorem 1. What happens 

when 0ks  for 0kk  ? We will present an interesting result in the following 

theorem: 

Theorem 2 

For 1 ab  and a being an odd integer,  0Ζ0 k  such that 
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Remark 3 
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Theorem 2 states the necessary and sufficient condition for the state vector to stay at a 

fixed point after a number of iterations when the parameter a is an odd integer. It is 

interesting to note that this fixed point is  1,1 . 

Example 2 

Consider the system 
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be seen from the figure that the state vector converges to a fixed point 
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Remark 4 

The above results are obtained when 1 ab . What happens when 1 ab ? We 

can show that results similar to lemma 1 and theorem 1 can be obtained as lemma 2 
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Figure 2. The phase portrait of the second order digital filter with two’s complement arithmetic. The 
points x(0), x(1), x(2) are as annotated, and the point with ‘*’ denotes the ‘steady state’ of x. 
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and theorem 3, while the results of theorem 2 can be modified to that of theorem 4. 

Remark 5 

Since one of the eigenvalues is unstable, one may predict that the periodic orbits are 

unstable. However, a counter-intuitive result is found that the periodic orbits are 

stable if a is an odd integer. The result is stated in observation 1 below: 

Observation 1 

When 1 ab  and a is an odd integer, the state vector toggles between two states at 

the steady state on a particular straight line 21 xx   of the phase portrait or 

converges to a fixed point 
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To demonstrate this phenomenon, a random initial condition  0x  is generated in 

2I , it can be shown in figure 3a that the state converges to a period-2 signal. 

 

 

Figure 3a. The phase portrait of the second order digital filter with two’s complement arithmetic. The 
initial condition x(0)=[0.7826 0.5242]T is generated randomly. When a=5 and b=6, the state converges 

to a period-2 signal. 
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However, when a  deviates from an odd integer a little bit, the state neither 

converges to a periodic signal nor a fixed point, as shown in figure 3b. 
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Theorem 3 

For 1 ab  and 11 a , 0ks  for 0kk   if and only if  0Ζ0 k  such 

that    0201 kxkx  . 

Example 3 

Consider the system 
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Figure 3b. The phase portrait of the second order digital filter with two’s complement arithmetic. The 
initial condition is x(0)=[0.8 -0.7999]T, a=3.001 and b=4.001, the state neither converges to a periodic 

signal nor a fixed point. 
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Theorem 4 

For 1 ab  and a being an odd integer, there does not exist Ζ0k  such that 

ask   for 0kk  . 
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Figure 4. The phase portrait of the second order digital filter with two’s complement arithmetic. The 
points x(0), x(1), x(2) are as annotated, and the point with ‘*’ denotes the ‘steady state’ of x. 
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As k ,  0kk , so 
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Example 4 

Consider the system 
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Observation 2 

When 1 ab  and a is an odd integer, the state vector converges to a fixed point 

on a particular straight line 21 xx   of the phase portrait for all the initial conditions 

in 2I . 
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Figure 5. The phase portrait of the second order digital filter with two’s complement arithmetic. The 
points x(0), x(1), x(2) are as annotated, and the point with ‘*’ denotes the ‘steady state’ of x. 
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To demonstrate this phenomenon, a random initial condition  0x  is generated in 

2I , it can be shown in figure 6a that the state converges to a fixed point. 

 

 

However, when a  deviates from an odd integer a little bit, the state does not 

converge to a fixed point, as shown in figure 6b. 

Figure 6a. The phase portrait of the second order digital filter with two’s complement arithmetic. The 
initial condition is x(0)=[-0.1886 0.87909]T, a=5 and b=-4, the state converges to a fixed point. 
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Figure 6b. The phase portrait of the second order digital filter with two’s complement arithmetic. The 
initial condition is x(0)=[0.5 0.5001]T, a=5.01 and b=-4.01, the state does not converge to a fixed point. 
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4.  CONCLUSIONS 

In this article, some interesting behaviors of second-order digital filters with two’s 

complement arithmetic are explored. The cases of 1 ab  and 1 ab  are 

analyzed and some necessary conditions for the symbolic sequences to be periodic 

after a number of iterations are given. The necessary and sufficient conditions for the 

system to behave as a linear system after a number of iterations and the state vector to 

toggle among several states or converge to a fixed point are given. 
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