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Abstract — The objective of this paper is to estimate the 

compressor discharge temperature measurements on an 

industrial gas turbine that is undergoing commissioning at site, 

using a data-driven model which is built using the test bed 

measurements of the engine. This paper proposes a Bayesian 

neuro-fuzzy modelling (BNFM) approach, which combines the 

adaptive neuro-fuzzy inference system (ANFIS) and variational 

Bayesian Gaussian mixture model (VBGMM) techniques. A 

data-driven compressor model is built using ANFIS, and 

VBGMM is applied in the set-up stage to automatically select the 

number of input membership functions in the fuzzy system. The 

efficacy of the proposed BFNM approach is established through 

experimental trials of a sub-15MW gas turbine, and the results, 

from the model that is built using test bed data, are shown to be 

promising for estimating the compressor discharge temperatures 

on the gas turbine during commissioning.  

Keywords— Bayesian neuro-fuzzy modeling; adaptive neuro-

fuzzy inference system; variational Bayesian Gaussian mixture 

model; compressor discharge temperature; industrial gas turbine. 

I. INTRODUCTION  

Predictive modelling is of great importance in the field of 
condition monitoring, fault diagnosis and measurement 
estimation for industrial gas turbines (IGTs) [1-3]. This study 
focusses on the development of a model (for a compressor, in 
this case) with IGT test bed data, which is then used to estimate 
an unknown measurement (compressor discharge temperature, 
in this case) on the engine during commissioning.  

Pure dynamic models of IGTs are commonly difficult to 
achieve due to the complexity in the structure, the auxiliaries 
and the control system. Panov [4] has developed a Simulink 
model, which can be used to simulate start-up operation, 
change of load, control system, power-system stabilities and 
real-time modelling of IGTs. However, the modelled IGT 
behaviours rely heavily on precise component maps delivered 
by specific engine tests. On the other hand, this paper aims to 
build an IGT model with data-driven techniques, i.e. in the 
absence of the specifically pre-defined component maps, which 
are normally incomplete due to the restrictions of the testing 
facilities, environments and control limits, etc.  

In contrast to the physical models (white-box models),  
black-box modelling approaches, such as the use of artificial 
neural networks (ANNs), have been broadly applied because of 
their high learning abilities and the non-linear and non-
parametric properties [5-7]. It has been shown with some 

success by ANNs, however, these models do not provide 
insights on the dynamical or physical properties of the system, 
and consequently are not adequate at dealing with uncertainties 
[8]. Alternatively, fuzzy inference systems (FISs) can use 
fuzzy rules to display and interpret the relationship between the 
inputs and outputs of the system, which are then more effective 
with uncertainties. As a result, a hybridization of ANN and FIS 
is sought, with a noticeable example being an adaptive neuro-
fuzzy inference system (ANFIS) [9]. ANFIS builds a FIS with 
a collection of fuzzy rules, and an ANN is used in each rule for 
parameter tuning. This takes the advantages of both FIS and 
ANN, e.g. with the former providing interpretation of the 
system inputs and outputs, and with the latter for non-
parametric estimation in non-linear systems. ANFIS has been a 
popular tool since its creation. For instance, Salahshoor et al. 
[10] have used three ANFIS classifiers, based on the most 
dominant parameters, for data-driven fault detection on an 
industrial steam turbine. Chen et al. [11] have proposed a-priori 
knowledge-based ANFIS for automated flagging of significant 
pitch faults on wind turbines. Moreover, Zhang et al. [12] have 
applied ANFIS to extract start-up vibration signatures for 
novelty detection on IGTs.  

In this article, ANFIS is employed to model the thermo-
dynamic behaviours of a compressor on an IGT based on the 
engine test data, which is then utilised to estimate the 
compressor discharge temperatures on this engine at site. Still, 
ANFIS needs a pre-defined number of input membership 
functions (MFs) or rules – less rules result in loss of precision, 
whilst too many rules cause redundancy and degradation of 
interpretability. In this sense, Bayesian method is a popular 
solution, when one aims to “take the human out of the loop” 
[13]. For example, a variational Bayesian Gaussian mixture 
model (VBGMM) has been applied to discriminate the 
operational data of IGTs into steady-state and transient 
responses automatically [14].  

The main contribution of the methodology in this paper, 
compared with the original ANFIS is that, VBGMM is applied 
for clustering the initial rules of the FIS automatically, so that 
the adequate number of input MFs can be selected, which then 
provides an adequate trade-off between the model specificity 
and sensitivity. The proposed Bayesian neuro-fuzzy modelling 
(BNFM) approach uses VBGMM to automatically select the 
number of input MFs, and ANFIS to set up the FIS and tune 
parameters using ANN. The efficacy of the BNFM is then 
demonstrated from the experimental trials of an IGT using both 
test bed data and field data.  



II. METHODOLOGY  

In Table 1, a concise description of the methodology is 
presented. An overview of the supporting principles for the 
used approach is explained in the following.   

TABLE I.  METHODOLOGY FRAMEWORK 

Phases Inputs Methods Outcomes 

Set up FIS  Test bed data  VBGMM Automatically 

selected cluster 

number 

Build BNFM Cluster number, 

Gaussian MFs 

for inputs 

ANFIS Compressor 

model built from 

test bed data 

Measurement 

estimation 

Field input 

measurements  

Built 

BNFM  

Output sensor 

estimation based 

on field data  

 

A. Adaptive Neuro-fuzzy Inference System 

ANFIS is a potent tool for predictive modelling, which 
combines the benefits from both FIS and ANN [9]. ANFIS 
applies fuzzy rules, where the parameters related to the MFs 
are estimated using ANN – usually with a backpropagation 
learning algorithm from input and output data.  

FIS utilises MFs to describe input characteristics and 
applies rules to map the input MFs to the output characteristics. 
Here, ANFIS uses a Sugeno-type FIS, where a typical rule is: 

If Input 1 is 1x  and Input 2 is 2x , then Output is 

cbxaxy  21 , and the final output is the weighted average 

of the outputs from all rules [16]. Similar to ANNs, an ANFIS 
provides MF parameter training to choose the best associated 
FIS for the given input/output data [9,15].  

Fig. 1 shows a typical ANFIS structure which consists of 2 
inputs, 2 rules and 5 layers – Layer 1: fuzzy layer, Layer 2: 
product layer, Layer 3: normalisation layer, Layer 4: defuzzify 
layer and Layer 5: output layer. There are 2 adaption layers 
(Layer 1 and Layer 4), where Layer 1 has tuneable premise 
parameters related to the input MFs, and Layer 4 has tuneable 
parameters related to the consequence part of the fuzzy rules. 
The objective is to optimise all these parameters to best match 
the train data. [11] 

 

 

Fig. 1.  Typical ANFIS structure [11] 

B. Variational Bayesian Gaussian Mixture Model 

A Gaussian mixture model (GMM) uses a linear 
combination of Gaussian distributions to estimate the 
probability density function of the sample data [17]. In this 
manner, the probabilistic distribution of sample data can be 
written as a sum of K variables normally distributed, with 

corresponding mean and standard deviation k  and k  

respectively. A GMM including K mixture components is then 
expressed as 


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K

k
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),|(),,|(  ,             (1) 

where k  are the mixing coefficients, and ),|( xN  denotes 

a normal probability density function of a multi-dimensional 

variable x, with mean  k  and standard deviation 

 k  . 

A variational Bayesian (VB) technique can be applied for 
selecting the necessary number of the mixture components. A 

set of binary latent variables  1,0nkz  is introduced, which 

specifies the associations among the given N data points and 
the K mixture components. The matrix Z identifies which data 

sample nx  belongs to which mixture component k.  

The joint probability distribution for all the variables of the 
GMM combined can be written as 

)()|()()|(),,|(),,,,(  pppZpZXpZXp  (2) 

where   ),|(  ),(  pp and )(p are Dirichlet, Gaussian and 

Wishart probability distributions separately [18].  

By using a VB technique, a lower bound on 

)|(),,|()|(  ZpZXpXp   can be obtained. By 

representing  ,,Z  and introducing a variational 

posterior distribution )|()(  pq , for the marginal log-

likelihood )|(ln Xp , the relation holds that: 

  )(| |)|(ln qLpqDXp KL  ,                    (3) 

where )(qL  is the lower bound and  pqDKL | |  is the 

Kullback-Leibler divergence. The variational posterior 
distribution can be reflected in terms of factorization over the 

subsets    ,,Zi  , which writes 

)()()(),,(   qqZqZq Z ,                    (4) 

The optimal distribution for each of the factors can be 

established through a free-form minimization over iq : 
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where  ijE  denotes the expectation of the distributions 

)( jjq   for all ij  . After calculating the variational factors 

in (4) through the use of (5), the lower bound )(qL  can be 



evaluated. The maximization of )(qL  minimizes )|(ln Xp , 

then the mixing coefficients   can be found. And the optimal 

distributions iq  are achieved by iteratively updating the 

variational factors until meeting the convergence criterion.  

For a more in-depth explanation on the application of the 
VB technique to GMMs, the reader is directed to Corduneanu 
and Bishop [18]. 

C. Bayesian Neuro-fuzzy Modelling 

BNFM generates an initial FIS by using VBGMM to 
extract a set of rules that represents the data behaviour. The 
rule extraction method first applies the VB technique to 
determine the number of rules automatically, and the MFs for 
the premises are set to be Gaussian functions [19]. This initial 
FIS is then fed into the ANFIS for training, which estimates the 
system parameters through a neural network training algorithm 
which combines the use least-squares minimization and the 
back-propagation gradient descent methodology to match the 
training data set [15]. The scheme of the methodology can be 
directed again to Table 1. 

III. CASE STUDY 

System modelling of the compressor via BNFM is applied 
using the test bed measurements of a sub-15MW IGT unit. The 
measurements include T1 (oC) – compressor inlet temperature 
(ambient temperature), T2 (oC) – compressor discharge 
temperature, P2 (bar) – compressor discharge pressure and 
Speed (%) – compressor rotational speed, as shown in Fig. 2. 
In this case, P1 (bar) – compressor inlet pressure (ambient 
pressure), is not measured, which is assumed   1 bar. The 
sampling rate varies from per second to per minute, thereafter 
we address the data “sample points” instead.  

In order to generate an interpretable surface for the 
compressor model, the input and output parameters are selected 
as, Input 1: Speed, Input 2: P2 (also presenting the pressure 
ratio PR = P2/P1), and Output: temperature ratio TR = T2/T1 
(here, T1 and T2 are converted to degrees Kelvin according to 
the thermodynamic laws). Then the final estimated T2 can be 
simply converted back to Celsius from the output TR by 

 15.273)15.2731(2  TTRT  .                  (6) 

 

 

Fig. 2.  Simplified diagram of the components of a prototypal industrial gas 

turbine. The input and output sensor positions for measuring the compressor 
characteristics are displayed in red colour. 

VBGMM is applied to the 3-D test bed data of Speed, PR 
and TR. In this case study, 5 clusters are identified by using the 
VB technique, as shown in Fig. 3. Consequently, the associated 
Gaussian MFs for the inputs Speed and PR are plotted in Fig. 
4. It can be seen from the test bed data in Fig. 3 that, a lot of 
the operational regimes are not tested due to the restrictions of 
unit testing control limits, whilst these regimes of Speed and 
PR are estimated over the whole range using the Gaussian MFs 
as shown in Fig. 4.  

Corresponding to the ANFIS structure in Fig. 1, now there 
are 5 MFs for each input, then the BNFM structure can be 
represented as shown in Fig. 5 in this case [20]. 

 
Fig. 3.  VBGMM clustering result of the inputs (speed and P2/P1) vs. output 

(T2/T1). 

 

 
Fig. 4.  Associated membership functions of BNFM for Input 1: Speed (%) 

and Input 2: P2/P1. 

 

 
Fig. 5.  BNFM / ANFIS structure for the case study 



After parameter tuning of the model through ANFIS, the 
input-output relations can be represented through a 3-D surface 
as shown in Fig. 6, where the output TR is plotted in a log-
scale to reduce the large value effect of the top areas. 
Comparing with the test bed data in Fig. 3, it is shown that the 
plot across the whole range of speeds and PRs is estimated by 
using the data-driven fuzzy modelling, although some of the 
regimes are infeasible to reach in a real testing situation 
according to the compressor performance. For instance, in the 
low speed vs. high PR regime, the model gives unreasonably 
large values of TR output due to the lack of training data in this 
regime. However, for normal IGT running regimes within the 
training data ranges, the modelled results are overall 
satisfactory.  

The estimated T2 measurements, calculated by (6) from the 
TR output using BNFM based on the test bed data, are plotted 
in Fig. 7. Estimation of T2 based on the training (test bed) data 
is shown in Fig. 7 (a), compared with the real training data of 
T2. The built BNFM model based on the test bed data is then 
applied to the field input measurements of Speed and PR, and 
the estimated T2 measurements, as shown in Fig. 7(b), are 
calculated using (6) from the modelled output TR and the 
known field measurements of T1. The estimation 
measurements are compared with the real field data of T2. 
From the results it can be seen that, the estimated T2 
measurements from BNFM based on test bed data can provide 
reliable estimation for field T2 measurements, and therefore 
could be used to replace the missing sensor or erroneous 
measurements during sensor malfunctions, and can also be 
used as a virtual sensor to provide additional evidence for IGT 
condition monitoring in additional to the existing physical 
sensors. 

Regarding the advantage of BNFM over ANFIS, the root 
mean squared errors (RMSEs) are checked for the ANFIS 
output TR by using a different number of rules in the FIS, e.g. 
varying from 2 rules to 10 rules. The output RMSEs of TR are 
plotted for training (test bed) data and for field estimation 
separately, as shown in Fig. 8. From the training set, it is 
shown that a selection of 7 rules/clusters gives the least RMSE, 
however, in the field estimation by using 7 rules, it gives a 
larger RMSE for estimated TR. This is due to the fact that, an 
optimised model is more specific towards the training data, and  

 

 
Fig. 6.  BNFM 3-D surface plot of inputs (speed and PR) vs. output (TR). 

 
(a) 

 
(b) 

Fig. 7.  BNFM estimation results of T2 for (a) test bed data – the training data 

and (b) field data – with supposedly unknown T2 measurement. 

 

therefore tends to have over-fitting issues when encountering 
new input data. In this case, 9 rules will give the least errors for 
both training data and field estimation, however, in the absence 
of real field measurement which is supposed to be unknown, it 
is difficult to determine 9 rules by training errors alone. 
Therefore, it can be seen that the choice of 5 clusters/rules is 
reasonable and presents a decent compromise between model 
specificity and sensitivity. 

 

 

Fig. 8.  Predictive performance vs. number of rules in ANFIS, for training 
data and for estimated measurement at site. 



IV. CONCLUSION 

A BNFM methodology is proposed in this paper, where 
VBGMM is used to identify the number of rules/ input MFs of 
an ANFIS in order to present more interpretability of the 
system modelling. The effectiveness of the proposed approach 
is then validated by using an experimental trial of an IGT 
compressor. It is shown that the built BNFM model based on 
test bed data can reliably estimate the T2 measurement on an 
IGT compressor at site, which can be used for both condition 
monitoring and missing sensor measurement reconstruction 
purposes. Moreover, this technique can be readily transferable 
for system modelling of other components to estimate different 
measurements. 

NOMENCLATURE 

ANFIS — Adaptive Neuro-Fuzzy Inference System 
ANN — Artificial Neural Network 
BNFM — Bayesian Neuro-Fuzzy Modelling 
FIS — Fuzzy Inference System 
GMM — Gaussian Mixture Model 
IGT — Industrial Gas Turbine 
MF — Membership Function 
P1 — Compressor inlet pressure (ambient pressure) 
P2 — Compressor discharge pressure  
PR — Pressure Ratio 
RMSE —Root Mean Squared Error 
Speed – Compressor rotational speed 
T1 — Compressor inlet temperature (ambient temperature) 
T2 — Compressor discharge temperature 
TR — Temperature Ratio 
VB — Variational Bayesian 
VBGMM — Variational Bayesian Gaussian Mixture Model 
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