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Abstract 

This paper discusses the design of neural network and fuzzy logic controllers using genetic 

algorithms, for real-time control of flows in sewerage networks. The soft controllers operate in a 

critical control range, with a simple set-point strategy governing "easy" cases. The genetic 

algorithm designs controllers and set-points by repeated application of a simulator. A comparison 

between neural network, fuzzy logic and benchmark controller performance is presented. Global 

and local control strategies are compared. Methods to reduce execution time of the genetic 

algorithm, including the use of a Tabu algorithm for training data selection, are also discussed. The 

results indicate that local control is superior to global control, and that the genetic algorithm design 

of soft controllers is feasible even for complex flow systems of a realistic scale. Neural network 

and fuzzy logic controllers have comparable performance, although neural networks can be 

successfully optimised more consistently. 

Genetic Algorithms Real-Time Control Fuzzy Logic Control Neural Network 

Control 

1. Introduction 

Combined sewerage systems are used in many cities and countries. The same 

pipes carry foul and storm flows in the system. Most of the time they function 

normally. During heavy rainfall inflow may exceed capacity, leading to overflows 

which are environmentally damaging, and expensive to the company. Overflows 

can be largely or entirely eliminated by construction of new storage tanks and 

sewers; however, such schemes are expensive and disruptive, as the systems are 
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distributed across wide geographical areas, particularly in major conurbations. 

Since inflows are seldom constant across the entire system, the incidence of 

overflow can in principle be reduced by real-time control (RTC) strategies, which 

adjust the flow among parts of the system under different loading. In practice, this 

may be achieved by the installation of actuated penstocks that can be opened or 

closed to control the flow past a certain point, together with sensor systems and 

controllers that operate the penstocks based upon measured depths at related 

points [11]. 

 

Standard optimization techniques, such as linear and dynamic programming, have 

been applied to this type of problem, but without great success other than for very 

simple networks [15]. Linear programming can be applied in simplified problems, 

but alternative solutions are difficult to evaluate. Dynamic programming could be 

successful if all possible configurations are tested, which requires sufficient 

computing resources. For a complex system, it is unrealistic. 

 

We have previously shown that genetic design of neural networks [11] and fuzzy 

logic controllers [2] is a feasible approach. However, there are key issues that 

these earlier papers did not address: the extremely heavy computational 

requirements, and the complexity issues raised by realistically scaled problems 

(the "curse of dimensionality" and  "combinatorial explosion"). This paper 

introduces techniques to improve controller performance, to limit controller 

complexity and to reduce the training time.  

 

In section 2 standard approaches to control of flow systems are briefly introduced. 

Section 3 describes how the soft controllers are implemented, and how they are 

optimised using a genetic algorithm. Section 4 discusses a novel Tabu-based 

algorithm that selects a subset of the training data for the genetic algorithm, 

maintaining selective pressure with greatly reduced execution time. Section 5 

presents experimental results, and section 6 concludes the paper. 

2. Standard Approaches to Flow Control 

The most common approaches to flow control are based upon the On-Off control 

strategy [13]. The output of the controller is a binary signal, interpreted as either 
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On or Off (i.e. the penstock is either fully open or fully closed). The controller 

output signal is changed if the detected fluid level crosses a specified depth (the 

set point). The set-points are usually chosen heuristically by an expert, although it 

is also possible to deploy optimisation algorithms to select them. 

 

On-Off control performs very adequately if a good set point is selected, but not 

optimally. One reason for the restricted performance is that the penstock may be 

opened and closed repeatedly during heavy rainfall. While closed, no flow at all is 

permitted, whereas in fact there is almost certainly some (reduced) capacity in the 

lower tanks. 

 

In practice, Two-point or Three-point control is usually applied instead of On-Off 

control. Two-point control is the simplest and most frequently applied method of 

discrete control. An example for Two-point control is a pump switch to fill a 

reservoir. The pump switches On at a low level and Off at a high level. Three-

point controllers are typically used for such regulators as sluice gates and weirs. 

The output signal changes according to the three input points: minimum, middle, 

and maximum [17]. Since these approaches are similar, we use On-Off controllers 

for benchmarking. 

3. Soft Controllers 

A wide range of soft computing techniques may be used to implement controllers, 

including neural networks [11], fuzzy logic [2], genetic programming [14], and 

classifier systems [10]. In all cases, the controller's output signal gives the 

penstock setting, and the input signals are measurements of fluid depth in 

appropriate tanks. In global control, a single controller takes inputs from 

throughout the system, and has outputs to all penstocks. In a local control system, 

inputs are from nearby tanks (typically those above and below the controller), and 

there is a single output. In either case, processing of continuous variables is 

required to represent the inputs and outputs, making neural networks and fuzzy 

logic systems a sensible choice. Both of them are well suited to handle continuous 

variables. 
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To optimise the controllers, a learning algorithm is required. Reinforcement 

learning methods, such as genetic algorithms, are feasible solutions (by 

reinforcement learning we mean search algorithms that work by generating 

proposed solutions and testing these to obtain a "fitness" or "error" value, that 

constitutes the sole feedback on performance to the optimisation algorithm). 

The genetic algorithm generates candidate controllers. To evaluate the fitness, 

each controller is embedded into a flow system simulator, which is executed one 

hundred times under different simulated weather conditions. The inflow 

sequences were generated using the Hydroworks simulation package [18], and are 

consistent with real weather patterns. Each simulation has about 500 time-steps.  

A count of the number of simulations that overflow provides a fitness value which 

is passed back to the genetic algorithm. Possible alternative optimisation 

approaches include Simplex [16] and Simulated Annealing [4], but these are not 

considered further here. 

In recent papers the authors have shown how genetic algorithms can be used to 

optimise the weights and biases of neural network controllers in very simple 

systems [11], and the membership functions and rule base of fuzzy logic 

controllers [2]. The experimental system architecture is shown in figure 1. 
 

 

 
 
 
 
 
 

Figure 1 The system configuration 
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3.1 Hybrid Crisp/Soft Controllers 

On-Off control achieves reasonably good results, as the strategy of allowing flows 

through the system as rapidly as possible when it is not heavily loaded is basically 

sound. Recognising this, we can improve the performance of the soft controllers 

by deploying a simple set point rule (a crisp controller) under light or medium 

loading, and only switching on the soft controller during periods of heavy loading. 

We therefore include a set point in our systems; when the fluid level is below the 

set point, the penstock is fully opened. When the fluid level is above the set point, 

the soft controller is used to determine how far open the penstock should be held. 

The soft controller is able to base this decision on the exact level of loading above 

and below the penstock, and (depending on the type of controller) on more global 

information. 

3.2 Computational Complexity 

There are two major issues in genetic design of soft controllers: the extremely 

high computational cost, and the computational complexity (the so-called 

"combinatorial explosion" problem). 

 

In our experiments, 100 different weather simulations are used, each containing 

about 500 time-steps, so that the system is optimised to respond to a 

representative range of possible conditions. During evaluation of a controller, the 

simulator is executed (solving flow equations and running the soft controllers to 

operate the simulated penstocks) until an overflow occurs, or the simulation 

completes without overflow. The evaluation of a single chromosome therefore 

requires up to 50,000 executions of each controller. A typical genetic algorithm 

for a reasonably simple problem might involve a population of one hundred 

chromosomes run for one hundred generations, requiring a total of 10,000 

chromosome evaluations, implying 500,000,000 controller executions in total. 

 

With these computational requirements, it takes several hours to evolve the 

controllers on a Sun SPARCstation 5 workstation even for a simple two tank 

system; a thirty one tank system takes several days. Fortunately, this issue only 

applies during the initial evolution of the controllers. Once evolved, they can be 
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embedded in the system and executed in real time. However, it is clearly still 

desirable to reduce the time spent in evolving the solution. 

 

Problem complexity is a key issue in scaling up to real-world size problems. 

Consider first the case of fuzzy logic controllers. Fuzzy logic controllers are 

usually applied to problems with small number of inputs. An increase in the 

number of input variables causes an exponential growth in the number of rules 

generated. For example, in a thirty one tank system using a single global network 

controller, there are thirty input variables, and the maximum number of generated 

rules is 2e14, assuming that 3 fuzzy sets are used for each input variable. We 

investigated the use of the Combs method to address this issue, but this proved 

largely unsuccessful; a more detailed discussion may be found in [3]. The "curse 

of dimensionality" issue makes fuzzy logic global control impossible for large 

sewerage networks. Global neural network controllers also have problems, if not 

on quite the same scale as fuzzy logic controllers. 

 

Local control avoids the complexity issue, at the price at sacrificing the possibility 

of optimal performance. Each controller takes only local inputs. The input 

variables are selected so that the same controller can be deployed anywhere in the 

system (e.g. depths are expressed as a proportion of the tank depth, rather than 

explicitly). The generic local controller is then embedded throughout the system, 

and "globally" optimised, in the sense that the genetic algorithm selects for 

controllers which when deployed en masse have desirable global dynamics. 

 

The controllers, whether neural networks or fuzzy logic, are combined with 

simple On-Off control. Each penstock is partially controlled using a set point on 

the tank depth immediately below the penstock. The set point is also selected by 

the genetic algorithm. If the fluid level does not exceed the set point, the penstock 

is kept open. Only when the fluid level is above the set point is the soft controller 

deployed, thus allowing it to concentrate on modelling the critical part of the 

response curve. 
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The soft controller takes two input variables - the fluid depths in the tanks above 

and below. The level below is measured from the set point, rather than from the 

bottom of the tank. 

3.3 Controller Representation 

Floating-point chromosomes are used to encode both neural networks and fuzzy 

logic controllers. There has been some dispute in the literature as to whether such 

a high-cardinality representation is appropriate; Goldberg argues [8] that a binary 

encoding maximises the number of schemata per bit, whereas Antonisse [1] 

interprets the schema definition differently, and concludes that the higher 

cardinality representation has more schemata. In a later paper, Goldberg [9] also 

recognises that high cardinality representations are sometimes superior. 

 

For neural networks (standard feedforward Multilayer Perceptron networks are 

used) the number of hidden units was fixed in preliminary experiments. Two 

hidden units are used for local controllers; the number varies in global controllers 

according to system complexity. The chromosome contains all the weights and 

biases of the network (plus an extra value for the set point). For the fuzzy logic 

controllers, the Mamdani approach with Min-Max-COG is used. Each 

input/output variable has three triangular fuzzy sets, requiring two floating-point 

numbers for each variable. The two floating-point numbers are used for the base 

lengths of the fuzzy sets, one for the first/third set and the other for the second. 

The centres of the fuzzy sets are fixed. This keeps the chromosome representation 

as simple as possible. A position dependent encoding is implemented to construct 

the fuzzy rule base, where every position corresponds to a rule. The value of an 

allele represents the output fuzzy set of the rule, and its locus the combination of 

input fuzzy sets. Further details on the encoding of the fuzzy logic controllers are 

given in [3]. 

4. Selection of Data using Tabu Search 

The Tabu Search, a modified hill-climbing algorithm, was introduced by Glover 

[6] [7]. The algorithm uses a flexible memory structure, the Tabu list, to prevent 

the search from becoming trapped at locally optimal solutions. Tabu restrictions 

and aspiration criteria are used to drive the search into new regions. Tabu 
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restrictions discourage the reversal (or sometimes repetition) of past moves, 

whereas aspiration criteria allow moves that would normally be disallowed by 

Tabu status, if there are special circumstances that imply the status should be 

overridden. 

 

We use a Tabu-like algorithm to select a subset of the training data (weather 

simulations) for use on each generation. Only a subset of the data has 

discriminatory value at each generation (specifically, only a simulation that causes 

some members of the population of controllers to overflow, and some not to, has 

discriminatory value). The set of discriminatory data changes over time - 

simulations that are easy to control without flooding can be discarded as the 

genetic algorithm converges, and simulations that initially caused flooding in the 

entire population can be usefully introduced later. Using such a subset reduces the 

execution time on each generation, while maintaining selective pressure. 

 

In the first generation, the entire set of 100 inflow sequences is used as the 

training data. Each controller is tested using the 100 sequences. The number of 

times that each causes an overflow is counted. After training, each sequence has 

an overflow count between 0 and 100. An overflow count of 0 means that the 

sequence has no discriminatory value, since all controllers passed the test; these 

sequences are discarded. On the other hand, an overflow count of 100 implies that 

it is extremely difficult to handle the sequence. No controllers passed the test at 

the first generation, and possibly no controllers can pass throughout the entire 

optimisation procedure. Such sequences are put in the Tabu list for 1-15 tenures 

(the number chosen randomly). 

 

In subsequent generations, 10 sequences are chosen. Sequences with a spill count 

below 20 are considered as unchallenging, and are placed in the discard list. The 

rest of the sequences are treated as candidates for selection in the next generation. 

 

A difficulty can arise if more than ninety sequences are put into the Tabu list, so 

that not enough are available for controller evaluation. In this case, another Tabu 

concept, the aspiration criteria, is brought into action. Sequences are randomly 

reselected from the discard list to form a full set of training data. 
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Extensive experimental results are reported in [3], but have been omitted from this 

paper for brevity. In summary, they show that the algorithm is just as effective as 

using the full set of data for training on each generation, but with a speed-up 

factor of nine. 

5. Experimental Results 

Experiments were conducted on a network of Sun SPARCstation 5 machines. The 

simulator is custom-written in the C programming language, as are the neural 

network and fuzzy logic controllers, whereas the inflow sequences were generated 

with a commercial simulation package, HydroWorks. The genetic algorithm is 

provided by SUGAL, The SUnderland Genetic Algorithms Library [12]. The 

simulator is capable of parallel execution using a Parallel Virtual Machine (PVM) 

environment [5]; however, as for the purposes of this paper a large number of 

simulations needed to be run, concurrent execution was not used in this case. 

 

Experiments were conducted using four systems of varying complexity, with two, 

three, ten and thirty one interconnected tanks respectively. The two tank system is 

the simplest possible system, yet real-time control is still demonstrably superior to 

simpler techniques. The three tank system is the simplest system that requires 

balancing of conflicting requirements. The ten tank system is sufficiently large to 

illustrate the contrasting performance of local and global control strategies, and 

the thirty one tank system is of comparable complexity with some real world flow 

systems. We use a single source file for each weather simulation. In order to 

simulate a weather pattern moving across a geographical area and increasing in 

intensity, a delay and scaling factor is used for the inflow into the up-stream 

tanks; see [3] for more details. 

 

The experiments with soft controllers were conducted five times, and the bar 

charts show the maximum and minimum performance across the five 

experiments. 
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5.1 Two Tank Experiments 

The first group of experiments uses a minimal two tank system (see figure 2). 

This system has two interconnected tanks, with an inflow to the upper tank and an 

outflow from the lower. A penstock is located on the jointing pipe. A spill is 

deemed to occur if the fluid level in either tank passes the top. The soft controllers 

are compared with several benchmarks, discussed further below. We also report 

results for soft controllers that act throughout the entire control range, and hybrid 

crisp/soft controllers that combine a set-point with a soft controller for the critical 

range. 

 

 
 
 
 
 

 
 

Figure 2 A two tank system 

 

 The Closed and Open benchmarks represent the situations where the penstock is 

either kept fully open or fully closed throughout the simulation. In the Fixed Best 

benchmark, the penstock is kept at 42% throughout - this particular aperture was 

experimentally determined to be the best fixed aperture. 

 

In the On-Off control benchmark, a simple On-Off controller is applied, with the 

set-point at 96% of the tank depth; again, this was experimentally determined to 

be the best set-point. 

• = Storage levels are all 2.5 metre 
(m) and storage plan areas are 
all 400.0m2 

• = Penstock area is 0.04m2 
• = The pipe area for the lower 

tank is 0.09m2  
• = Penstock  discharge coefficient 

has value of 2.0 
• = Outflow outlet restrictions is 

0.06m2 
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Figure 3 A comparison of the number of spills in a two-tank system 

The optimum spillage rate is calculable for this simple flow system, although not 

for any more complex system. Since water can only exit the system through the 

outflow in the lower tank, and the speed of the outflow is related to the depth in 

the lower tank, to get the optimal performance we maximise the rate of outflow by 

keeping the lower tank as full as possible. This is done by initially opening the 

penstock fully, then as the level of the bottom tank nears the top, opening the 

penstock just sufficiently to keep it fully topped up. We calculate the optimal 

aperture on each iteration by experimentally determining the largest aperture that 

does not cause overflow. 

It is noticeable that, even on this very simple system, On-Off control does not 

achieve optimal performance, whereas the hybrid soft controllers do. The 

exception is the Combs method fuzzy controller, which performed relatively 

poorly. 
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Figure 4 A three tank sys
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Even the very modest increase in complexity from the two tank system has 

noticeable effects. We again observe that the Combs method is inferior, and this 

was abandoned for subsequent experiments. On-Off control proves noticeably 

inferior to the hybrid soft controllers. With this simple system, there is no 

distinguishable difference in performance between the local and global 

controllers. 

 

Neural networks show a modest superiority over fuzzy logic in this instance, 

although it would be dangerous to draw general conclusions from this. 

5.2 Ten Tank Experiments 
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Figure 6 Local versus global control in a ten-tank system 

To illustrate the difference in performance of local and global control strategies, a 

system containing ten tanks is presented. Global fuzzy control was not attempted, 

as the combinatorial explosion makes the Mamdani approach infeasible, and the 

Combs method proved markedly inferior even on the simple two tank and three 

tank systems. The results are shown in figure 6. They demonstrate quite clearly 

the superiority of the simpler local control strategies. 

 

As the global controller is required to model quite a complex transformation 

function, we experimented with a range of network complexities, containing from 

two to six hidden units, and both one and two hidden layers. The result reported is 

for the best of these networks; see [3] for further details. 
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5.4 Thirty-one Tank Experiments 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 A 31 tank system 
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• = Penstock discharge coefficient all have value of 2.0 

• = Outflow outlet restrictions are all 0.6 m2 

• = A indicates the storage plan area (m2) 

• = H indicates the height of the tank base above a baseline 

 

The thirty one tank system contains 14 up-stream tanks feeding into 17 

downstream tanks; see figure 7. The system includes reverse-flow dynamics 

(where flow can reverse along a near-horizontal pipe), and is of comparable scale 

to some real world problems [3]. Since this system includes a large number of 

tanks and penstocks, it seems reasonable that in On-Off control different set-

points might be used for each controller. Two On-Off benchmarks are therefore 

illustrated. In the first, a single common set-point is used (experimentally 

optimised). In the second, a genetic algorithm was used to select different set-

points for each controller. The results are shown in figure 8. Once again, it is clear 

that the soft controllers have superior performance. 
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Figure 8 A comparison of the number of spills in a 31-tank system 

6. Conclusion 

Real-time control of the flow in complex network systems such as sewerage 

systems is an extremely difficult problem. The interaction between control actions 

in different parts of the system, combined with exogenous effects from rainfall, 

make it almost impossible to design good control strategies "by hand." 
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Soft computing techniques can be used to implement controllers, by embedding 

the controllers into a simulator, evaluating performance under a range of 

conditions, and feeding back an assessment of performance to guide a genetic 

algorithm for optimisation. 

 

Our experiments have indicated that this approach is feasible for networks of 

realistic scale, although to date we have used simplified flow dynamics in the 

simulator. However, it is not anticipated that the inaccuracies in the simulator 

invalidate the conclusion that automatic design is possible. 

 

Two forms of soft controller have been investigated: neural networks and genetic 

algorithms. Our experiments show that the performance of the two methods is 

comparable; neural networks optimise well more consistently, but with sufficient 

runs fuzzy logic controllers usually match their performance. Fuzzy logic 

controllers also have the benefit of interpretability, and may be preferable in some 

cases for this reason. 

 

Global control has been shown to be infeasible, at least with the techniques we 

have so far deployed. Possible alternatives that might address the problem include 

sparsely connected networks, and/or weight decay/elimination techniques, both 

the subject of future work. Local control achieves significantly better control than 

the conventional benchmark methods that were examined. 

 

A key issue is the extremely high computational cost involved in optimising the 

controllers. We have addressed this issue using several techniques: a hybrid 

scheme including a set point that simplifies the task required of the soft 

controllers; a PVM based concurrent genetic algorithm simulator; and a novel 

Tabu-based algorithm that selects a training data subset on each generation of the 

genetic algorithm without reducing selective pressure. 

 

It is interesting to consider whether there are general classes of problem to which 

this approach can be applied. We identify the following critical features in our 

system: 
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• = It consists of a directed network through which some "commodity" travels; 

• = The network has a definite and limited "loading capacity" within each locale, 

and overloading is problematic; 

• = The system may be under uneven load; 

 

The generic approach is to adaptively restrict flow so as to avoid local 

overloading. Other problem-domains where this approach might apply, besides 

other fluid flow problems,  include goods supply networks, manufacturing system 

and discrete event simulations. 
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