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Abstract—This paper presents the fuzzy-model-based control
approach to synchronize two chaotic systems subject to parameter
uncertainties. A fuzzy state-feedback controller using the system
state of response chaotic system and the time-delayed system state
of drive chaotic system is employed to realize the synchronization.
The time delay which complicates the system dynamics makes the
analysis difficult. To investigate the system stability and facilitate
the design of fuzzy controller, T-S fuzzy models are employed to
represent the system dynamics of the chaotic systems.
Furthermore, the membership grades of the T-S fuzzy models
become uncertain due to the existence of parameter uncertainties
which further complicates the system analysis. To ease the
stability analysis and produce less conservative analysis result, the
membership functions of both T-S fuzzy models and fuzzy
controller are considered. Stability conditions are derived using
Lyapunov-based approach to aid the design of fuzzy
state-feedback controller to synchronize the chaotic systems.
Simulation examples are presented to illustrate the merits of the
proposed approach.

Index Terms—Chaotic
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I. INTRODUCTION

Fuzzy-model—based control approach is a promising
approach to deal with complex nonlinear systems. It has

been successfully applied in wvarious applications.
Recently, fuzzy-model-based control approach has been
employed to synchronize chaotic systems, which is a useful
application in communication system to ensure a secure
communication.

In fuzzy-model-based control approach, generally, T-S
fuzzy model [1]-[2] is employed to describe the dynamical
behaviors of the response and drive chaotic systems. It was
shown in [3]-[5] that most common chaotic systems can be
represented by T-S fuzzy models with simple rules. Based on
the T-S fuzzy model, a fuzzy state-feedback controller [3]-[6] is
then designed to realize the synchronization. Under a design
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criterion that the grades of membership of both response and
drive chaotic system are known, LMI-based exact linearization
conditions [3], [6] were given to design a fuzzy state-feedback
controller to synchronize two identical chaotic systems. In
[4]-[5], this design criterion was alleviated by using the H,,
tracking control approach. Under the approach in [4]-[5], the
grades of membership of the drive chaotic system are not
necessarily known and the tracking performance is guaranteed
by an H,, tracking performance index. The fuzzy-model-based
control approach has combined with adaptive ability [6]-[11] to
deal with chaotic systems subject to parameter uncertainties.
With the outstanding approximation ability of the fuzzy
system, the uncertain parameter values of the chaotic systems
can be estimated in an online manner according to some update
rules. A fuzzy controller can generate an appropriate control
action based on the estimated parameters. The adaptive fuzzy
approach offers a superior robustness property, however,
computational demand and structural complexity of the
controller are increased. In some operating environment, the
system state information of the drive chaotic system reaches the
responses system with time delay owing to the long-distance
transmission.  Under such a situation, the current state
information of the drive chaotic system cannot be obtained to
realize the synchronization. In [12]-[14], synchronization
using time-delayed feedback control was investigated. Linear
controller using constant time-delayed system state information
of both drive and response chaotic system, and the current
system state information of response chaotic system was
proposed to realize the synchronization. Both time-delay
independent and dependent stability conditions were derived
[12]-[14] using the Lyapunov-Krasovksii function. This
delayed-feedback control approach was extended to adaptive
fuzzy framework [15]. In [17]-[19], the synchronization of
neural networks subject to time delay was considered.

In this paper, a fuzzy controller is proposed to synchronize
two chaotic systems. The fuzzy controller makes use of current
system state information of the response chaotic system and the
time-delayed system state information of the drive chaotic
system to realize the synchronization. The time delay to be
considered is time varying and uncertain in value. It is due to
this reason, the proposed fuzzy state-feedback controller
cannot use the time-delayed system state information of the
response chaotic system compared to the linear control
[12]-[14] and the adaptive fuzzy control [15] approaches of
which constant time delay was considered. To cope with the
time-varying delay, the boundedness property of the system
states of the drive chaotic system is taken advantage to
investigate system stability.  Furthermore, the parameter



uncertainties of the chaotic systems eliminate the favourable
properties of the fuzzy-model-based control approach to
facilitate the stability analysis and produce relaxed stability
conditions [3]-[6], [12]-[15]. To alleviate the difficulties
introduced by parameter uncertainties, membership functions
of both fuzzy model and fuzzy controller are considered.
Consequently, some free matrices are allowed to be introduced
to the stability conditions to ease the stability analysis and
produce less conservative stability conditions. LMI-based
stability conditions are derived to aid the design of a fuzzy
controller to realize the synchronization.

This paper is organized as follows. In section Il, the fuzzy
model and the time-delayed fuzzy state-feedback controller is
presented. In section Ill, system stability is investigated.
LMI-based stability conditions are derived to guarantee the
system stability. In Section 1V, a simulation example is given
to illustrate the effectiveness of the proposed approach. A
conclusion is drawn in section V.

Il. Fuzzy MODEL AND TIME-DELAYED FUzzY CONTROLLER

In this paper, we consider the scenario depicted in the block
diagram in Fig. 1, e.g., a communication channel. Referring to
this block diagram, in the remote side, we have a drive chaotic
system subject to parameter uncertainties. The system state
x(t) of the drive chaotic system is transmitted over a channel

to the other end. The long distance of the communication
channel will introduces a time-varying delay of z(t) > 0 to
x(t). Asaresult, x(t —z,(t)) is available for synchronization.

As the fuzzy controller is assumed to be very close to the
response system subject to parameter uncertainties, hence, the
time delay for the response chaotic system with the system state
of x(t) is insignificant. Consequently, the fuzzy controller
realizes the synchronization based on the timed-delayed system
state of x(t —z,(t)) and current system state of x(t).

To facilitate the system analysis and controller synthesis,
fuzzy models are employed to represent the dynamical
behavior of the response and drive chaotic systems subject to
parameter uncertainties. A time-delayed fuzzy state-feedback
controller is designed accordingly to drive the system state of
the response chaotic system to follow those of the drive chaotic
system. The details of the fuzzy model and fuzzy controller are
presented in the following sub-sections.

A. Fuzzy Model

Let p be the number of fuzzy rules describing the chaotic
system subject to parameter uncertainties with control input
term. The i-th rule is of the following format,

Rulei: IF f(x(t)) is M} AND ... AND f, (x(t)) is M.,
THEN x(t) = A;x(t)+Bu(t),i=1,2,..,p (1)
where M! is a fuzzy term of rule i corresponding to the
function f_(x(t)) with known form, ¢=1,2, ..., % i=1,2, ..,
p, ¥is a positive integer; x(t) e R™* is the system state vector;
A, e R™ and BeR™" are the known constant system and

input matrices respectively; u(t) e R™* is the input vector.
The system dynamics are described by,

(0 = 3w, (xO)(Ax() + Bu() 0
where
Zp:Wi(x(t))=1, w,(x(t) [0 1] foralli (3)
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k=1
(4)
is a nonlinear function of x(t) and ., (f,(x(t))) is the grade

w, (x(t)) =

of membership corresponding to the fuzzy terms M . Let the
chaotic system of (2) be the response system. Similarly, the
dynamics of the drive chaotic system subject to parameter
uncertainties can be represented by a fuzzy model with q fuzzy
rules in the form of (1). Consequently, the dynamics of the
drive chaotic system can be represented as,

K0 =2 W &OA KO ©)

where x(t) e R™ is the system state vector. f&j e R™" is the

known constant system matrix; W, (x(t)) [0 1] is the grade

q
of the membership and ZWJ (x(t)) =1. It should be noted that

j=1
there is no control input term for the drive chaotic system. The
grades of membership are uncertain in value due to the
existence of the parameter uncertainties.

B. Time-Delayed Fuzzy State-Feedback Controller

A time-delayed fuzzy controller with p fuzzy rules is
employed to realize the synchronization. The j-th rule of the
fuzzy controller is of the following format.

Rule j: IF g,(x(t)) is NJ AND ... AND g, (x(t)) is N},
THEN u(t) =G, (x(t) - X(t-7,(t)),=1,2,..p (6)
where N; is a fuzzy term of rule j corresponding to the
function g,(x(t)), 8=1,2, .., j=1,2, .., p; L2is a positive
integer; G; e R™" is the feedback gain of rule j to be

designed; 7y(t) > O denotes the uncertain time-varying time
delay. The inferred time-delayed fuzzy controller is defined as,

u(t) = ij m; (x(1))G; (x(t) - X(t - 7, (1)) 7
where
im (x(®) =1, m;(x®) [0 1] forallj (8)

=

£y (92 (x(0)) > 2y, (9, (x())) -+ x g1y, (9 (X(1)))

m,(x()) = —
3 [ty (0, (K0) % 1 (0 (X(O) -+ 1, (00 (X))

k=1
9)
is a nonlinear function of x(t) and ., (g,(x(t))) is the grade
Vi

of membership corresponding to the fuzzy term N}, . Referring
to the proposed fuzzy controller of (7), it is assumed that the



system state x(t) of the response chaotic system in the local side
can be accessed without time delay. However, due to the long
transmission line, the system state x(t—z,(t)) of the drive
chaotic system in the remote side is subject to an uncertain
time-varying delay zy(t).

I1l. STABILITY ANALYSIS

The objective of synchronization is to drive the system states
of the response chaotic system of (2) to follow those of the
drive chaotic system of (5) using the time-delayed fuzzy
controller of (7). To proceed to the system stability analysis,
from (2), (5) and (7), the error system is defined as follows.

é(t) = x(t) - X(t)
= iwi (x(0)(A,x(t) + Bu(t)) - Zq:\fvj (,}(t))lgj;((t)

j=1
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W, RO)A X(1)

< ¢L[\'1v ]1[\111
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i=1

el

+ 7w (X(E)AX(1) + Z m, (x(t))BG, (x(t) — X(t — 7, (1))

i=1

2 JRO)A X0
_ Zpl:iw (x()m, x®)(A, + BG  J(t)
+ Zpl‘,W (X(t)A X(t) + Z m, (x(1)BG; (X(t) - X(t - 7, (t)))
z JGO)A X0
- Zp:,JZplW (x(®)m, (x)(A, + BG, e +m, ()  (10)
where

m, ()= 3 (xOAZO + 3 m (<O)BG, RO -t~ 7, (1)

q ~
= D W (R(D)A X(t)
j=1
. Itshould be noted that m, (t) is bounded due to x(t), wi(x(t))
and W, (x(t)) are bounded. In the following analysis, wi(x(t)),
mi(x(t)) and W, (x(t)) are denoted as w;, m; and w; for

simplicity. Furthermore, the property of the membership

p p p P
functions that > w, = > 'm; = > > wm, =1 is applied in
i=1 j=1 i=1 j=1
the following analysis. The error system of (10) is represented
as the following form to facilitate the stability analysis.

éft) = 2(t) )
20) = Y WA (D) + YO + m, (1) (12)
y() = > mBG e(t) (13)

From (12) and (13), the following property, which is applied
during the stability analysis, can be obtained.

0000e(t) 0

b P 0 0 0 |m()| [0
ZZw,m] = (14)
= BGJ 0 -1 0| y(t) 0

AT 1T -1 z(t) 0

To investigate the stability of (10), the following Lyapunov
function candidate is employed.

V(t) = e(t)" Pe(t)
where P, =P, ¢ R™" >0. From (11) and (15), we have,
V (t) = e(t) " Pe(t) + é(t) " Pe(t)

=e(t) Pz(t) +z(t)" Pe(t)

(15)
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z(t) 000 0[[0 00 off20
+
000 0[[0 000
00000 00 0
T T\
e(t) 000 TI][000TI e(t)

t 0000/ (0000 t
_|m® P’ + Pm()(16)
y(®) 0000/ [0000V0 y()
z(t) 0000 (0000 |zt

P, 0 0 0
P, P, 0 0
where P=| * 3 and P, e R™ ,k=1,2,.., 10.
P, P. P, 0
P7 PS P9 PlO

From (14) and (16), we have,
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(17)

p
where U=U" =) wU, eR™, U;=U," eR™ >0, i =1,

i=1

2, .., p and o is a non-zero positive scalar. Let,
X, 0 0 0
X X 0 0
X: 1 1 :P—l , X1:X1T:P1—lemnxn ,
X, X; X, 0
XS XG X7 XS
X, =D WX, eR™, X, eR™,i=1,2,..,p;k=2,3,..,8,
i=1
e(t)
m, (t
v(t)=X" :® , G, =NX,"and N, eR™,i=12 ..,
y(t)
z(t)
p. From (17), we have,
0 o0 0
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A, T I -1
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0 0 00

—e(t)" P,UPe(t) + c°m_(t)" P,UP,m_(t)



i Zp: w,m, v(t)"V,;v(t) —e(t) P,UPe(t)

i=1 j=1 (18)
+0o’m,(t)"P,UPm,(t)
where
X, +Xg' +U; —o’U, * * *
v - X, —o’U, -0V, S S
: BNj _Xzi +X7iT _Xai _XAi _XAiT *
T T
AX +X + Xy - X + X X+ Xy — X X4 =Xy —Xgi — Xgi

The symbol “*” denotes the transposed element at the
corresponding position. It can be seen from (18) that the
system is stable if V;; < 0 for all i and j. However, it produces a
very conservative stability analysis result. In order to alleviate
the conservativeness, the membership functions of both fuzzy
model and fuzzy controller are designed such that w; — pm; + >
0 for all i and x(t) where o> Oand yare scalars to be determined.
From (18), we have

. PP
V) =Y w(m, + pw, - o, + 7 =y MOV, V(D)

i=1 j=1

—e(t)"P,UPe(t) + o’m, (t)" P,UPm,(t)

- pzplzplwiwiv(t)TVijv(t) - Zp:Zp:WiJ/V(t)TVijV(t)
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+
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I
AN

w(m; — o, + 7 ()T AV

]

—;W (1_

—e(t)" P,UPe(t) + o°m,(t)" P,UPm,(t)

= iwv(t) (pV.. ~(1-p+py)A, —yivikjv(o

k=1

+Zp“zp: (m - W, +;/>v(t) (V + A, )v(t)

i=1 j=1

p+ Py AV()

(19)

—e(t)" P,UPe(t) + o’m, (t) " P,UP,m,(t)

where A, = A" e R*™" i=1,2, .., p, are arbitrary matrices
which are severed to transfer stable elements between the first

two terms in the right hand side of (19) to compensate unstable
elements to produce less conservative stability analysis result.
It can be seen from (19) that if

P
PV —(L=p+py)A, —7> V, <0 and V, + A, <0 for i, j =
k=1

1,2,..,p, we have,
V (t) < —e(t)"PUPe(t) + c°m,(t)" P,UP,m,(t)

Taking integration on both sides of (20), we have,
[Vrs (- e(t)"P,UPLe(t) + o°m, (t) P,UP,m, (t) it

(20)

V() -V (0) < [ (- e(t) P,UPe(t) + o*m, (t) P,UPm, (t) kit

jo “e(t)"P,UP,e(t)dt <V (0) + j:a?me(t)TPluplme(t)dt (21)

Based on the facts that V() > 0 and ¢* > 0, the H., tracking
performance of (21) is achieved to guarantee the tracking
performance. It can be seen that a good tracking performance
is ensured by a small value of ¢®. The stability analysis result is
summarized in the following theorem.

Theorem 1: The error system of (10), formed by the response
chaotic system in the form of (2), the drive chaotic system in the
form of (5) and the timed-delayed fuzzy state-feedback
controller of (7), satisfies the following H. tracking
performance for a prescribed attenuation level o> 0,

jo “e(t)TP,UP,e(t)dt <V (0) + '[:crzme(t)TPlUlee(t)dt ,

if the membership functions of the time-delayed fuzzy controller
are designed such that m,(x(t)) — pw, (x(t)) +y >0 for all i

and x(t) where p > 0 and y are scalars and there exist
constant matrices X, =X, e R™, X, e R™", N, e R™",

U, =U"eR™ and A=A eR*™ that the
following LMIs hold.

X,>0; U;>0,i=1,2,..,p;

such

PVi —(1—,D+ p?/)Ai _7Zp:vik <0,i=1,2..p;

k=1

Vi+A<0,ij=1,2,..,p;

and the feedback gains are defined as G, = N,X, ™
p.

=12, ..,

Remark 1: The above analysis is valid if X is invertible.
Referring to Theorem 1, if there exists a solution to the stability
conditions in Theorem 1, it implies that X, >0 ,

X, +X, >0 and X; +X, >0 for all i. These are

sufficient conditions for X to be a non-singular matrix to ensure
that X is invertible.

Remark 2: Referring to Theorem 1, it can be seen that the
stability conditions do not relate to the information of the time
delay. Hence, the error system is guaranteed to be stable for
any value of time delay.



IV. SIMULATION EXAMPLES

Three examples are given in this section to illustrate the
effectiveness of the proposed approach.

A. Example 1

Two Rossler systems subject to parameter uncertainties are
employed as the response and drive chaotic systems
respectively. The proposed time-delayed fuzzy controller is
employed to realize the synchronization.

Step 1)  The dynamics of the response Rssler’s system with
input term are described as follows,

x(t) = A(x(t))x(t) + Bu(t) (22)
%, (t) 0 -1 -1
where x(t) =[x, (t) |, A(x(t))=|1 a 0 and
X, (t) b 0 —(c(t)-x(1)
0
B=|0 ; a = 0.34, b = 0.4,
1
o(t) = Smx ;Cm‘" + L ;Cm‘" SiN@M) € [Cn  Cmad > O is the

uncertain parameter, Cuin, = 4.5, and Cpax = 7.7. It is assumed
that x,(t)e[c,,, —d ¢, +d] and d = 25. The response
Rdssler system can be exactly represented by a fuzzy model
with the following fuzzy rules [3]-[5].

Rule i: IF x,(t) is M'

THEN x(t) = A;x(t) +Bu(t),,i=1, 2. (23)
The inferred response Rassler system is defined as
2
x(t) = 3w, (x (1)(A;x(t) + Bu(t)) (24)
i=1
0 -1 -1 0 -1 -1
where A, =|1 a O and A,=|1 a O ;
b 0 -d b 0 d
1 c(t) —x,(t
W5 0) = i G 0) = 3 14 L0210 and

W, (%, (1)) = £, (% (1)) =1— g2, (X (1)) . It can be seen that the

uncertain parameter c(t) makes the grades of membership
function uncertain in value. Consequently, the proposed
approaches in [3]-[6], [12]-[16] for uncertainty-free chaotic
systems cannot be applied.

Step 2) The dynamics of the drive Réssler’s system subject to
parameter uncertainties are given as follows.

X(t) = AR()R() (25)
%, (t) 0 -1 -1
where X(t) =| %,(t) | and A(x(t))=|1 & 0
%,(t) b 0 —(E1)- %)

where 4=0.34, b=0.4, &(t) =21 + %cos(t) is

regarded as the parameter uncertainty, ¢, =4.5 and ¢, =7.7.

Step 3) The fuzzy state-feedback controller of (7) is employed
to handle the synchronization problem using the time-delayed
system state information of the drive system. The fuzzy rules
are designed as follows.

Rule j: IF x,(t) is N;

THEN u(t) = G, (x(t) - X(t — 74 (1)), = 1, 2 (26)
The inferred fuzzy controller is defined as

2
u(t) = > m; (%, ()G (x(t) - X(t — 7, (1)) @7)

=1
where the membership functions are designed as
m, (%, (t)) = My (x,(t)) = —0.0179(x,(t) —29.5) + 0.0804 and
m, (%, (1)) :1_/UN12 (X (1)) =1-m,(x () for
x@®) el —d c,,+d]. Itcan be shown that the condition

of m;(x,(t)) — pw; (x,(t)) + 7 >0 for all j and xy(t), with p =

0.91 and y = 0, is satisfied. By solving the solution to the
stability conditions in Theorem 1 using MATLAB LMI
toolbox, with o = 0.1, we have G; = [1202.0599 8403.8542
-38.3676] and G, = [657.4397 4602.8992 -51.5845];

Fig. 2 shows the system state responses of the response and
drive chaotic systems under the initial conditions of

xt)=[0 1 o] and x(t)=L 0 O] for t > 0. In this
simulation, u(t) = 0 is employed for 0 <t < 50s and the fuzzy
state-feedback controller is applied for t > 50s with

7, (t) = 0.0]{1+Wj . Fig. 3 shows the tracking error

between the response and drive systems. Referring to these
figures, it can be seen that the proposed fuzzy controller, which
is applied for t > 50s, is able to drive the system states of the
uncertain response Rossler’s system to follow those of the
uncertain drive Rossler’s system with a sufficiently small
tracking error. The simulation is repeated for

() = 0-1(1+Mj and 7, () :1+W

respectively . Fig. 4 to Fig. 7 show the system responses and
the tracking error between the response and drive systems
respectively. Referring to these figures, it can be seen that the
tracking error cannot be kept small for z,(t) :1+m
but bounded when the value of time delay is sufficiently large.

In this example, it can be seen that the proposed fuzzy
controller is able to synchronize both the response and drive
chaotic systems subject to parameter uncertainties and
time-varying delay. However, the theories developed in
[3]-[6], [12]-[16] for uncertainty-free chaotic systems with
constant time delay cannot be applied to handle the
synchronization problems considered. Compared with the
fuzzy adaptive controller in [8]-[11] for chaotic systems, the
proposed fuzzy controller offers lower computational demand
and structural complexity. Moreover, the time delay is not
considered in [8]-[11].



A. Example 2

Two Chen’s systems [16] are considered as the drive and
responses systems. In this example, the proposed control
scheme is compared with that in [16] of which no time delay
and parameter uncertainties are considered. It can be seen that
the proposed fuzzy controllers offer simpler structure and
better performance.

The Chen’s system can be exactly represented by the fuzzy
model with two fuzzy rules [16] in the form of (23). It should
be noted that the drive Chen’s system does not have the control
input of u(t). The inferred Chen’s system [16] is in the form of

-a a @0 —-a a 0
(24) with A, =|c-a ¢ -d|, A,=|c-a ¢ d
0 d -b 0 —-d -b
100
and B={0 1 0| wherea=35b=3,c=28andd=30. The
0 01

membership functions for the drive and response systems are

defined 2 R0 =, (o) 31+ 0] and
W,y (R, (1) = 1,0 (R (1) = 1= g2, (X, (1)) ,

mum»=ywuﬁ»:%@+§§g »

W, (X1 (1)) = £y (X4 (1)) = 1= 1,0 (X, (1))
assumed that both the drive and response chaotic systems work
in the operating domain of X (t)e[-d, d] and
x,(t) e[-d, d]. Consequently, the fuzzy model for the drive

and response Chen’s systems are defined respectively as
follows.

respectively. It is

{0 =Y W& AR @9
K0 =3 W 0 O)AXO + Bu() @)

Referring to [16], the fuzzy controller is defined as follows.

2 2
u(t) = Z;,\fv,- (%, (O)F; x(1) - Z;W,- (X ()F; x(t) (30)
= 1=
~34.5000 13.8737 —0.1086
where F, =| 141263 28.5000 -31.1732 and
0.1086  31.1732 -2.5000
~34.5000 13.8737 —0.1086
F, =| 141263 28.5000 28.8268 |.
0.1086  28.8268 - 2.5000

For comparison purpose, the proposed fuzzy controller with
two rules is employed to realize the synchronization. The rule
of the proposed fuzzy controller id in the form of (26). Asinput
time delay in [16] is not considered, for fairness of comparison,
we set zy(t) = 0 for the proposed fuzzy controller which is
defined as follows.

2
u(t) = Y. m, ()G (x(t) - x(t)) (31)
=1
As the membership functions of the fuzzy model of the
response system do not have parameter uncertainties, the fuzzy
controller of (31) share the same membership functions as
those of the response system, i.e, m,(x(t)) =w, (x(t)),i=1, 2.
Under such a situation, we have p =1 and y= 0 such that the
membership function condition of m, (x(t)) — pw, (x(t)) + » >0

satisfies. It should be noted that when p =1 and y = 0, the
stability condition of V; +A; <0 can be removed from

Theorem 1. By solving the solution to the stability conditions
in Theorem 1 using MATLAB LMI toolbox, with p=1and y=

0 and o = 0.1, we have
15.7209 -17.2495 -0.0033
G, =|-10.7505 -47.2791 4.6147 and
0.0033 -4.6147 -16.2791
15.7209 -17.2318 -0.0815
G,=|-10.7682 —47.2791 -—4.7057 |.
0.0815 47057 -16.2791

Fig. 8 and Fig. 9 show the tracking error between the
response and drive Chen’s systems with the fuzzy controller of
(30) and the proposed fuzzy controller of (31) for initial system

states of x(0)=[10 10 10| and x(0)=[0 0 O] . It can

be seen from the figures that the proposed fuzzy controller
performs better in terms of shorter converge time. The
converge time for the fuzzy controller of (30) in [16] is about
10.5s, 13s and 8s for ey(t), e,(t) and es(t) respectively. While
for the propose fuzzy controller of (31), the converge time is
about 0.3s for all e(t), ex(t) and e3(t). Furthermore, although
both fuzzy controllers of (30) and (31) are able to synchronize
the driven and response systems, the proposed fuzzy controller
offers a simpler structure as only the membership functions of
the response system are used.

C. Example Il

Two Lorenz systems [10] are considered as the drive and
response systems. The drive Lorenz is subject to parameter
uncertainties. The fuzzy adaptive control scheme in [10] is
employed to synchronize the Lorenz systems and is compared
to the proposed fuzzy control approach. In [10], the following
rule is employed to describe the system dynamics of the Lorenz
system subject to parameter uncertainties.
Rulei: IF X,(t)is M’

THEN i) =(&, + A, k@), i=1,2
0 0 0 0 0 0

(32)

where A, =|0 -1 -d , f&z= 0 -1 d and
0 d 0 0 -d 0
- a O

Ay,=A,=|p 0 0|, a=10,4=28and y=8/3. The
0 0 -y



parameters of ¢,  and y are assumed to be unknown in this
example [10]. It is assumed that %,(t) €[-d, d] withd = 20.

The inferred Lorenz system is defined as follows.

(0= Y w&OA + A, kO &)
where the membership function are defined as
W (R (1) = 4, (5, (0) = %(u XT“’j and

W, (%, (1) = 22,0 (%, (1)) =1 = g, (X, (1)) . The fuzzy response

system in [10] is described by the follow reuls.
Rulei: IF X (t)is M'

THEN %)= (A, + A, k@) +Bu@® i=1,2.  (34)
100 _0?11 0?12 0
where B={0 1 0 ALll = ,Bl 0 0 and
001 0 0 -7
R a21 Oy
A, = ,62 0 0 | are the estimates of A, and Ay
0 0 -7,

respectively. According to [10], the adaptive law is defined as
Ay =0, W(RO)EO - xOKO =12 (35)
where o, =2 and o, =25 are constant adaptation gains.

Given in [10], the rule of the fuzzy adaptive controller is of the
following form. _
Rulei: IF X (t)is M/

THEN u(® = (A, +K k@), j=1,2 (36)
The inferred control law is defined as follows.
2 .
u®) = 3%, O)A, +K, ko (37)
j=1
19.3222 0 0
where K, = 0 19.9970 0 and
0 0 19.7788
28.9833 0 0
K, = 0 29.9955 0
0 0 29.6682

Fig. 10 shows the tracking error between the response and
drive Lorenz systems with the fuzzy adaptive controller of (37).

The initial system states are set to be X(0)=[10 10 10]" and
x(0)=[0 0 0], and the initial values of &, @, , dy,

Gy B By, 7, and 7, areall setto be zero. Referring to this

figure, it can be seen that the fuzzy adaptive controller in [10] is
able to synchronize the drive and response systems. The
converge time for ey(t), e,(t) and es(t) is about 7.5s, 3.5s and 3s
respectively.

For comparison purpose, the proposed fuzzy controller is
employed to realize the synchronization. To design the
proposed fuzzy controller, a fuzzy model with two rules is
employed to exactly describe the system behavior of the

response Lorenz system. The fuzzy rule is in the form of (23)
and the inferred Lorenz system is defined as in (24) with

-a a 0 -a a o0
A=|b -1 —-d|and A,=| b -1 d | where a =
0 d -c 0 -d -c

12, b =30 and ¢ = 3. As the parameter values of the drive
Lorenz system are assumed to be unknown, the parameter
values, a, b and c, of the response Lorenz system are chosen
arbitrarily. The membership functions of the fuzzy model are

defined s wl(xl(t»=uM1(x1(t))=§[1+XlT<‘>j and

W, (%, (1) = 4,,. (% (1)) =1 g, (X, (1)) . As no input time delay
is considered in [10], for fairness of comparison, we set z(t) =
0 for the proposed fuzzy controller in the form of (31). The
fuzzy controller shares the same membership functions of the
fuzzy model. As aresult, we have p=1and y= 0 such that the
membership function condition of m, (x(t)) — pw, (x(t)) + » >0

satisfies. By solving the solution to the stability conditions in
Theorem 1 using MATLAB LMI toolbox, with p=1and y=0

and (o) = 0.002, we have
-951.1174 -19.6154 0
G,=| —22.3846 -962.1174  3.0796 and
0 -3.0796 -960.1174
-951.1174 -19.6154 0
G,=| —22.3846 -962.1174 -3.0769
0 3.0796 —-960.1174

Fig. 11 shows the tracking error between the response and
drive Lorenz systems with the proposed fuzzy controller in the
form of (31). The initial system states are set to be
X(0)=[10 10 10] and x(0)=[0 O O]'. It can be seen
that fuzzy controller is able to synchronize the drive and
response Lorenz systems with the converge time of about
0.006s for all e4(t), e,(t) and ea(t).

Referring to Fig. 10 and Fig. 11, it can be seen that the
proposed fuzzy controller performs better in terms of shorter
converge time. Furthermore, compared to the fuzzy adaptive
scheme in [10], it can be seen that the proposed fuzzy control
scheme offers a simpler approach to realize the synchronization
in terms of lower structural complexity and computational
demand for the response system and fuzzy controller.

V. CONCLUSION

The synchronization of chaotic systems subject to parameter
uncertainties using timed-delayed fuzzy state-feedback
controller has been investigated. The fuzzy state-feedback
controller using the system state of the response chaotic system
and the time-delayed system state of the drive chaotic system
has been proposed to realize the synchronization. To overcome
the analysis difficulties introduced by the system time delay
and parameter uncertainties, first, T-S fuzzy has been employed
to represent the chaotic systems subject to parameter
uncertainties. Then, the membership functions of both fuzzy



model and fuzzy controller have been considered to facilitate
the stability analysis and produce less conservative stability
analysis result. LMI-based stability conditions have been
derived using Lyapunov-based approach to guarantee the
system stability and aid the design of the time-delayed fuzzy
controller. Simulation examples have been given to illustrate

the effectiveness of the proposed approach.
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Fig. 1. Block diagram of the chaotic synchronization system.
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Fig. 3. Tracking error of the response Rdssler system with u(t)
=0 for 0 <t < 50s and the proposed fuzzy controller applied for
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Fig. 11. Tracking error of the response Lorenz system with the

proposed fuzzy controller.



