1.
Acary, V., & Brogliato, B. (2008).
Numerical methods for nonsmooth dynamical systems — Applications in mechanics and electronics. Berlin: Springer.
MATH2.
Asher, G. M. (1993). The robust modelling of variable topology circuits using bond graphs. In Proceedings of the 1993 Western Simulation Multiconference – International Conference on Bond Graph Modeling ICBGM’93, La Jolla, CA (pp. 126–131).
3.
Beers, C. (2005). Efficient Simulation Model for Hybrid Bond Graph [Poster]. Vanderbilt University. Available
http://fountain.isis.vanderbilt.edu/publications/BondITRReviewPoster.ppt. Cited Aug. 2010.
4.
Beers, C. D., Manders, E., Biswas, G., & Mosterman, P. J. (2006). Building efficient simulations from hybrid bond graph models. In 2nd IFAC Conference on Analysis and Design of Hybrid Systems (Vol. 2, pp. 71–76). Alghero, Italy.
5.
Bidard, C., Favret, F., Goldztejn, S., & Lariviere, E. (1993). Bond graph and variable causality. In Proceedings of International Conference on Systems, Man and Cybernetics: Systems Engineering In the Service of Humans (Vol. 1, pp. 270–275). Le Touquet, France.
6.
Borutzky, W. (2010). Bond graph methodology – Development and analysis of multi-disciplinary dynamic system models. London: Springer.
7.
Branicky, M. S., Borkar, V. S., & Mitter, S. K. (1998). A unified framework for hybrid control: Model and optimal control theory.
IEEE Transactions on Automatic Control, 43, 31–45.
http://doi.org/10.1109/9.654885.
MathSciNetCrossRefMATH8.
Breedveld, P. C. (2000). An alternative model for static and dynamic friction in dynamic system simulation. In 1st IFAC Conference on Mechatronic Systems, Darmstadt, Germany (pp. 717–722).
9.
Breedveld, P. C. (2002). Modelling and simulation of bouncing objects: Newton’s Cradle revisited. In Proceedings of the Mechatronics.
10.
Brown, F. T. (1972). Direct application of the loop rule to bond graphs.
Transactions ASME Journal of Dynamic Systems, Measurement and Control, 94(3), 253–261.
CrossRef11.
Buisson, J. (1993). Analysis and characterization of hybrid systems with bond-graphs. In Proceedings of the International Conference on Systems, Man and Cybernetics: Systems Engineering in the Service of Humans, Le Touquet, France (pp. 264–269).
12.
Buisson, J., Cormerais, H., & Richard, P. Y. (2002). Analysis of the bond graph model of hybrid physical systems with ideal switches. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 216, 47–63.
13.
Calvo, J. A., Boada, M. J., Roman, J. L. S., & Olmeda, E. (2010). BONDSYM: Simulink based educational software for analysis of dynamic system.
Computer Applications in Engineering Education, 18, 238–251.
http://doi.org/10.1002/cae.20246.
14.
Cellier, F. E., Otter, M., & Elmqvist, H. (1994). Bond graph modeling of variable structure systems. Simulation Series, 27, 49.
15.
Cuijpers, P. J. L., & Reniers, M. A. (2005). Hybrid process algebra.
Journal of Logic and Algebraic Programming, 62(2), 191–245.
MathSciNetCrossRefMATH16.
Cuijpers, P. J. L., Broenink, J. F., & Mosterman, P. J. (2008). Constitutive hybrid processes: A process-algebraic semantics for hybrid bond graphs.
Simulation: Transactions of the Society for Modeling and Simulation International, 84, 339–358.
http://doi.org/10.1177/0037549708097215.
CrossRef17.
Dai, L. (1989). Impulsive modes and causality in singular systems.
International Journal of Control, 50(4), 1267–1281.
MathSciNetCrossRefMATH18.
Daigle, M. J., et al. (2009). A qualitative event-based approach to continuous systems diagnosis. IEEE Transactions on Control Systems Technology, 17(4), 780–793.
19.
Dauphin-Tanguy, G., & Sueur, C. (2002). Bond graph for modelling, analysis, control design, fault diagnosis [Presentation Slides]. Available
www.fceia.unr.edu.ar/~kofman/seminario/Argentine-nov02.ppt. Cited Dec. 2010.
20.
Gawthrop, P. J. (1997). Hybrid Bond Graphs Using Switched I and C Components (CSC Report 97005). Centre for Systems and Control, University of Glasgow.
21.
Geitner, G. H. (2006). Power flow diagrams using a bond graph library under SIMULINK. In 32nd Annual Conference on IEEE Industrial Electronics IECON 2006, Paris, France (pp. 1359–1365).
22.
Karnopp, D. C., Margolis, D. L., & Rosenberg, R. C. (2006). System dynamics modeling and simulation of mechatronic systems. New York, NY: Wiley.
23.
Lattmann, Z. (2010). A Multi-domain Functional Dependency Modeling Tool Based on Extended Hybrid Bond Graphs. Dept. Electrical Engineering, Vanderbilt University.
24.
Lewis, F. L. (1986). Survey of linear singular systems.
Circuits, Systems and Signal Processing, 5(1), 3–36.
MathSciNetCrossRefMATH25.
Lewis, F. L. (1992). Review of 2-D implicit systems.
Automatica, 28(2), 345–354.
MathSciNetCrossRefMATH26.
Lewis, F. L. (1992). A tutorial on the geometric analysis of linear time-invariant implicit systems.
Automatica, 28(1) 119–137.
MathSciNetCrossRefMATH27.
Lewis, F. L., & Ozcaldiran, K. (1989). Geometric structure and feedback in singular systems.
IEEE Transactions on Automatic Control, 34(4), 450–455.
MathSciNetCrossRefMATH28.
Low, C. B., Wang, D., Arogeti, S., & Zhang, J. B. (2010). Causality assignment and model approximation for hybrid bond graph: Fault diagnosis perspectives.
IEEE Transactions on Automation Science and Engineering, 7, 570–580.
CrossRef29.
Margetts, R. (2013). Modelling and analysis of hybrid dynamic systems using a bond graph approach. University of Bath Dept. Mechanical Engineering. Available via OPUS.
http://opus.bath.ac.uk/48041/. Cited 3 June 2016.
30.
Margetts, R., Boudon, B., & Ngwompo, R. F. (2017). Simulation of causally dynamic hybrid bond graphs, with application to a power converter. In The 36th IASTED International Conference on Modelling, Identification and Control (MIC 2017). Innsbruck: IASTED (accepted).
31.
Margetts, R., & Ngwompo, R. F. (2014) Hybrid bond graphs for contact, using controlled junctions and dynamic causality. In Proceedings of the Summer Simulation Multiconference, Monterey, CA.
32.
Margetts, R., & Ngwompo, R. F. (2015). Mode switching in causally dynamic hybrid bond graphs.
Mechatronics. doi:
10.1016/j.mechatronics.2015.04.013.
33.
Margetts, R., Ngwompo, R. F., & da Cruz, M. F. (2013). Modelling a drop test of a landing gear using a hybrid bond graph. In E. P. Klement, W. Borutzky, T. Fahringer, M. H. Hamza, & V. Uskov (Eds.),
Proceedings of the IASTED International Conference on Modelling, Identification and Control (pp. 312–317). Innsbruck: ACTA Press.
http://doi.org/10.2316/P.2013.794-072.
34.
Margolis, D. L. (1987). Exploiting causality for structured models using bond graphs. In 1987 American Control Conference, Minneapolis, MN (pp. 1457–1461).
35.
Mosterman, P. J. (2000). Implicit modeling and simulation of discontinuities in physical system models. In 4th International Conference on Automation of Mixed Processes: Hybrid Dynamic Systems ADPM2000, Dortmund, Germany (pp. 35–40).
36.
Mosterman, P. J. (2002). HyBrSim — A modelling and simulation environment for hybrid bond graphs. Proceedings of the IMechE Part I: Journal of Systems and Control Engineering, 216(11), 35–46.
37.
Mosterman, P. J., & Biswas, G. (1995). Modeling discontinuous behavior with hybrid bond graphs. In 9th International Workshop on Qualitative Reasoning about Physical Systems, Amsterdam, Netherlands (pp. 139–147).
38.
Mosterman, P. J., & Biswas, G. (1996). A theory of discontinuities in physical system models.
Journal of The Franklin Institute, 335B(3), 401–439.
MATH39.
Mosterman, P. J., & Biswas, G. (1997). Formal specifications for hybrid dynamical systems. In Proceedings of the 15th International Joint Conf. Artificial Intelligence IJCAI-97, Nagoya, Japan (pp. 568–573).
40.
Mosterman, P. J., & Biswas, G. (1998). Hybrid automata for modeling discrete transitions in complex dynamic systems. In 7th IFAC Symposium on Artificial Intelligence in Real-Time Control, Grand Canyon National Park, AR (pp. 43–48).
41.
Mosterman, P. J., & Biswas, G. (2000). A comprehensive methodology for building hybrid models of physical systems.
Artificial Intelligence, 121(1–2), 171–209.
MathSciNetCrossRefMATH42.
Mosterman, P. J., Zhao, F., Biswas, G., & Amer Assoc Artificial, I. (1998). An ontology for transitions in physical dynamic systems. In 15th National Conference on Artificial Intelligence (AAAI 98) (pp. 219–224). Madison, WI: American Association Artificial Intelligence.
43.
Narasimhan, S. (2002).
Model-Based Diagnosis of Hybrid Systems. Dept. Computer Science, Vanderbilt University.
CrossRefMATH44.
Otter, M., Remehle, M., Engell, S., & Mosterman, P. (2000). Hybrid models of physical systems and discrete controllers. AT - Automatisierungstechnik, 48, 35–40.
45.
Podgursky, B., Biswas, G., & Koutsoukos, X. D. (2010). Efficient tracking of behavior in complex hybrid systems via hybrid bond graphs. In Annual Conference of the Prognostics and Health Management Society. Portland.
46.
Rahmani, A., & Dauphin-Tanguy, G. (2006). Structural analysis of switching systems modelled by bond graph.
Mathematical and Computer Modelling of Dynamical Systems, 12(2–3), 235–247.
MathSciNetCrossRefMATH47.
Rosenberg, R. C. (1987). Exploiting bond graph causality in physical system models.
Transactions on ASME Journal of Dynamic Systems, Measurement and Control, 109(4), 378–383.
CrossRef48.
Rosenberg, R. C., & Andry, A. N., Jr. (1979). Solvability of bond graph junction structures with loops.
IEEE Transactions on Circuits and Systems, 26(2), 130–137.
MathSciNetCrossRef49.
Roychoudhury, I., Daigle, M. J., Biswas, G., & Koutsoukos, X. D. (2011). Efficient simulation of hybrid systems: A hybrid bond graph approach.
Simulation, 87, 467–498.
CrossRef50.
Shiva, A. (2004). Modeling Switching Networks Using Bond Graph Technique. Dept. Aerospace and Mechanical Engineering, University of Arizona.
51.
Sontag, E. D. (1998). Mathematical control theory — Deterministic finite dimensional systems. Textbooks in Applied Mathematics (Vol. 6). New York: Springer.
52.
Strömberg, J. E. (1994). A Mode Switching Philosophy (Dissertation No. 353). Linköping University.
53.
Sueur, C., & Dauphin-Tanguy, G. (1989). Structural controllability/observability of linear systems represented by bond graphs.
Journal of The Franklin Institute, 326(6), 869–883.
MathSciNetCrossRefMATH54.
Tudoret, S., Nadjm-Tehrani, S., Benveniste, A., & Stromberg, J. E. (2000). Co-simulation of hybrid systems: Signal-simulink. In M. Joseph (Ed.), Proceedings of the 6th International Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems FTRTFT 2000 (Vol. 1926, pp. 134–151). Pune, India.
55.
Van Der Schaft, A. (2005). Theory of Port-Hamiltonian Systems Chapter 1: Port-Hamiltonian formulation of network models; the lumped-parameter case. Dutch Institute of Systems and Control (DISC). Available
http://www.math.rug.nl/~arjan/teaching.html. Cited May 2010.
56.
Van Der Schaft, A. (2006). Port-Hamiltonian systems — An introductory survey. In Proceedings of the International Congress of Mathematicians, Madrid, Spain (pp. 1339–1365).
57.
Van Der Schaft, A. (2009). Port-Hamiltonian systems: From geometric network modeling to control [Lecture notes for the EECI Graduate Course, LSS-Supelec, Gif-sur-Yvette]. Available
http://www.math.rug.nl/~arjan/teaching.html. Cited May 2010.
58.
Van Der Schaft, A. J., & Schumacher, J. M. (1999). An introduction to hybrid dynamical systems. Lecture notes in control and information sciences (Vol. 251). London: Springer.
59.
Van Kampen, D. (2003). Paper path modeling case in 20-SIM (Report 2003CE025). Department of Electrical Engineering, University of Twente, Enschede, The Netherlands.
60.
Verghese, G. C., Levy, B. C., & Kailath, T. (1981). A generalized state-space for singular systems.
IEEE Transactions on Automatic Control, 26, 811–831.
http://doi.org/10.1109/tac.1981.1102763.
MathSciNetCrossRefMATH61.
Vu, L., & Liberzon, D. (2008). Invertibility of switched linear systems.
Automatica, 144, 949–958.
MathSciNetCrossRefMATH62.
Willems, J. C. (2007). The behavioural approach to open and interconnected systems.
IEEE Control Systems Magazine, 27(6), 46–99.
http://doi.org/10.1109/MCS.2007.906923.
MathSciNetCrossRef63.
Willems, J. C. (2008). Modeling interconnected systems. In 2008 3rd International Symposium on Communications, Control and Signal Processing ISCCSP2008, St. Julians, Malta (pp. 421–424).
64.
Yip, E. L., & Sincovec, R. F. (1981). Solvability, controllability and observability of continuous descriptor systems.
IEEE Transactions on Automatic Control, 26(3), 702–707.
MathSciNetCrossRefMATH65.
Zimmer, D., & Cellier, F. E. (2007). Impulse-bond graphs. In Proceedings of the 2007 International Conference on Bond Graph Modeling (ICBGM 2007), San Diego, CA (pp. 3–11).