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Abstract 
Genetic Algorithms are often employed for 
neural network feature selection. The efficiency 
of the search for a good subset of features, 
depends on the capability of the recombination 
operator to construct building blocks which 
perform well, based on existing genetic material. 
In this paper, a commonality-based crossover 
operator is employed, in a multiobjective 
evolutionary setting. The operator has  two main 
characteristics: first, it exploits the concept that 
common schemata are more likely to form useful 
building blocks; second, the offspring produced 
are similar to their parents in terms of the subset 
size they encode. The performance of the novel 
operator is compared against that of uniform, 1 
and 2-point crossover, in feature selection with 
probabilistic neural networks .  

1 INTRODUCTION 
Evolutionary algorithms (EAs) are increasingly employed 
in neural network modelling for tasks, ranging from 
evolution of connection weights, network architectures 
and learning rules to evolution of inputs, control 
parameters and ensembles of networks [1]. In particular, 
EAs have been used to aid the selection of feature subsets 
in various classification tasks (e.g. [2]  [3]). Recently, the 
use of Multi Objective Evolutionary Algorithms (MOEA) 
has been suggested for feature selection [4]. In addition, a 
novel, commonality-based crossover operator has been 
introduced, called Subset Size Oriented Common 
Features (SSOCF) operator [5]. When put in a 
multiobjective evolutionary setting, the SSOCF operator 
can facilitate the search for good subsets of features . This 
is achieved, first by preserving building blocks with 
promising performance, and second by promoting useful 
population diversity across the range of Pareto optimal 
solutions. In multiobjective optimisation, a key concept is 
that of Pareto optimality. Solutions are compared against 
each other in terms of Pareto dominance, i.e. a solution is 
dominant over another only if it has better performance in 
at least one criterion and non-inferior performance in all 
criteria. A solution is said to be Pareto optimal if it cannot 

be dominated by any other solution in the search space. In 
complex search spaces, wherein exhaustive search is 
infeasible, it is very difficult to guarantee Pareto 
optimality. Therefore, instead of the true set of optimal 
solutions (Pareto Set), one usually aims to derive a set of 
non-dominated solutions with objective values as close as 
possible to the objective values (Pareto Front) of the 
Pareto Set. Feature sele ction is well-suited to 
multiobjective optimisation. In the simplest case, it 
involves two objectives: feature subset size minimisation 
and performance maximisation. In this paper, a variation 
of the niched Pareto GA (NPGA) [6] is employed. This is 
known to be a fast MOEA [7], since tournament 
domination is determined by a random subsample of the 
population. However, any MOEA could be employed in 
this setting. Details of the MOEA employed in this work 
can be found in [5]. This paper examines the performance 
of the SSOCF operator against n-point crossover 
operators in multiobjective evolutionary feature selection. 

2 SUBSET SIZE-ORIENTED COMMON 
FEATURES CROSSOVER 

Common uniform or n-point crossover operators can be 
disruptive, since they may result in breaking up useful 
building blocks. When the aim is to identify good subsets 
of features for different subset sizes, common crossover 
operators can have an additional negative side effect. A 
standard crossover operating on two individuals, coding 
subsets of size n and m, tends to yield offspring with 
complexity approximately (n+m)/2. Therefore, the EA 
tends to explore mostly medium-sized subsets, while the 
edges of the non-dominated front are less well explored. 
In [5], the SSOCF crossover operator is introduced, a 
commonality-based operator, which helps preserving 
building blocks of promising performance. It also yields 
offspring populations with relatively even distribution, 
across the range of the Pareto front, while it does not 
require mating restrictions. It exploits the concept that 
preserving the maximal common schema of two parents 
results in a more creative recombination strategy, 
compared to standard crossover. This concept has been 
recently termed the Commonalty-Based Crossover 
Framework [8]. 



Commonality-based operators have been previously 
employed for feature selection in [9] and [10]. In the 
former (CF/RSC algorithm) , the non-common features are 
discarded and any features additional to the common are 
inserted as the result of mutation. In the latter (CHC 
algorithm) , half of the differing bits are crossed at random 
[11], and therefore this  operator also tends to average the 
number of selected bits. In both CF/RSC and CHC the 
aim is to identify a single solution. Here , instead of 
aiming at a single solution, we seek to obtain a range of 
solutions across the Pareto front. In the simplest case, 
these are non-dominated solutions in a two -dimensional 
complexity-performance space. The SSOCF operator 
utilises the subset size of each mating parent as the 
desirable target state for each offspring. The functionality 
of the SSOCF operator is illustrated in Figure 1. Both 
offpring preserve the common features of their parents. 
The non-shared features are inherited by the offspring 
corresponding to the ith parent with probability (ni-nc/nu), 
where ni is the subset size of the ith parent, nc is the 
number of commonly selected features across both mating 
partners and nu is the number of non-shared selected 
features. Those non-shared features which are not 
inherited by the first offspring are inherited by the second. 
The SSOCF operator has no effect when one parent is a 
subset of its mating partner. In such cases, any potential 
modification is the result of consequent mutation. The 
SSOCF operator lends itself to a simple mutatio n 
adaptation strategy, while there is no need to adapt the 
crossover rate. This strategy is described in detail in [5].  

3 FITNESS ASSIGNMENT WITH 
PROBABILISTIC NEURAL NETS 

In classification, performance can be assessed in terms of 
the misclassification rate. In this paper, feature selection 
is treated as a multiobjective optimisation problem, in the 
Pareto sense. The objectives are subset size minimisation 
and performance maximisation. We consider a dual 
modelling performance criterion consisting of the 
estimated misclassification rate and the cost function. The 
former is common regardless of the classifier and the 
training algorithm employed, whereas the latter depends 
on the choice of classifier and algorithm. The major 
computational cost, associated with the use of EAs for 

feature selection, is in the feature subset evaluation. 
Probabilistic neural networks (PNNs) have modest 
computational requirements for reasonably small data sets 
[12]. They are based on simple kernel density estimation, 
equivalent to Parzen windows. PNNs use Bayes rule to 
estimate the posterior class probabilities, that an input 
vector x corresponds to the class i? . The primary 
performance measure in our experiments is the estimated 
misclassification rate, while the secondary is a sum 
squared error form [5]. Classifiers built without some of 
the useful features  carry an omission bias. A second type 
of bias, which is more difficult to handle, is the selection 
bias. This  occurs as a result of the data-dependent nature 
of the subset selection process. Selection bias becomes 
more of a problem when the ratio of the number of 
training patterns to the number of potential predictor 
variables is small. A simple way of reducing selection 
bias is by resampling. Here, ten different random splits of 
the available data set  are employed, each into three 
subsets. The first is employed for training; the second for 
assessing the impact of different subsets of inputs during 
the MOEA feature selection. The third data set (the test 
set) is kept aside for independent evaluation of the final 
models. Fitness assignment during the MOEA search is 
performed by taking the average fitness over the different 
validation sets. A three-element fitness vector is passed to 
the MOEA. The first two values, the misclassification rate 
and the feature subset size, are the primary objectives to 
be minimised. The third value is the cost function and is 
treated as a secondary cost term, only employed to 
compare individuals achieving the same misclassification 
rate. An additional benefit of the resampling is that it 
reduces the effect of the noise in fitness evaluation.  

4 EXPERIMENTAL INVESTIGATION 
We compare the performance of the SSOCF operator 
against that of standard n-point crossover on a 
benchmarking data set  of considerable dimensionality, the 
ionosphere dataset [13]. It consists of 351 patterns, with 
34 attributes and one output with two classes . Ten random 
permutations of this data set are emp loyed. Each one is 
split in 3 subsets. The training set consists of 176 patterns, 
the validation set 88 and the evaluation set 87. In addition, 

Selected
Features

n1=8

Chromosome Length: lc=13

common bits: 5
commonly selected: nc=2Chromosome

c1 * 1* * ***0 * *100

Parents

1 10 1 1100 1 1100

c2

non-common bits: nu=8

n2=4 1 *1 1 111* 1 1***0 11 0 0010 0 0100

OffspringChromosome  c o1 Chromosome  c o2
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Figure 1: Example of the functionality of the Subset Size Oriented Common Features Operator 



the best non-dominated solutions found by forward 
selection and backwards elimination are compared against 
those found by MOEA . In terms of computational costs 
the MOEA is considerably more expensive than 
sequential methods. The sequential procedures always 
continue from the subset having the best performance at 
each step. The following settings are employed:  
? Four different runs have been performed with each one 
of the SSOCF, uniforn, 1 and 2-point crossover. 
? N-point crossover settings: crossover rate: 0.85, 
mutation rate: 1/ cl . ( cl  is the chromosome length) 
? triangular sharing function; sharing threshold is 4/cl .  
? tournament group size: 3; sampling group size: 20.  
? PNN smoothing factor: 0.2.  
? Initial population: uniform distribution across the 
feature subset size and the different features.  
? Parent population size: 200.  
? Sequential feature selection: the best subsets found by 
both forward selection and backwards elimination.  
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Figure 2: Non-dominated solutions 

In both sequential and MOEA feature selection there are 
cases where an increase in the subset size does not 
improve performance. Experiments carried out have 
shown that the MOEA consistently finds a number of 
solutions missed by the sequential feature selection. In 
particular, the front identified by MOEA feature selection 
consists of 9 feature subsets, with 6 of them missed by 
sequential feature selection (Figure 2). The results are 
illustrated in Figure 3, where the average number of non-
dominated solutions found, out of a non-dominated front 
of size 9 is shown for generation 25, 50, 100 and 150.  

5 CONCLUSION 
An experimental comparison of the commonality-based 
SSOCF operator against standard n-point crossover has 
been performed. All operators were  employed in a MOEA 
feature selection setting. MOEA feature selection 
discovers a number of non-dominated solutions missed by 
both forward selection and backwards elimination. The 
results obtained provide strong evidence that the SSOCF  
operator can find a larger set of non-dominated solutions, 
compared to the n-point crossover. Moreover, these 
solutions are found at a much earlier stage of the MOEA 
feature selection process. Among n-point operators there 

is no clear winner with the exception of the uniform 
crossover, which appears to be more disruptive. 
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