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Abstract: In this paper we discuss the concept of co-adaptation between a human operator and a machine interface and

we summarize its application with emphasis on two different domains, teleoperation and assistive technology.

The analysis of the literature reveals that only in a few cases the possibility of a temporal evolution of the

co-adaptation parameters has been considered. In particular, it has been overlooked the role of time-related

indexes that capture changes in motor and cognitive abilities of the human operator. We argue that for a more

effective long-term co-adaptation process, the interface should be able to predict and adjust its parameters ac-

cording to the evolution of human skills and performance. We thus propose a novel approach termed progres-

sive co-adaptation, whereby human performance is continuously monitored and the system makes inferences

about changes in the users’ cognitive and motor skills. We illustrate the features of progressive co-adaptation

in two possible applications, robotic telemanipulation and active vision for the visually impaired.

1 INTRODUCTION

In the field of Human-Computer Interaction (HCI)

and, more generally, in the field of Human-Machine

Interaction (HMI), the term co-adaptation refers to

the process of adjustment of both the machine and

the human operator during prolonged interaction. In

other words, “both the human user and the machine

should be able to adapt to the other through ex-

periencing the interaction occurring between them“

(Sawaragi, 2005). Designers of HMI applications

can adopt several strategies for implementing adap-

tive changes in the HMI system with goals akin to

co-adaptation: these approaches are defined human-

centered and goal-oriented .

The aim of human-centered (or user-centered) co-

adaptation is to create a pleasant interface (Dixon,

2012) that maximizes usability. The design needs are

shaped around the user skills and expectations. Ac-

cording to ISO 9241-210:2010 (Jokela et al., 2003),

human-centered design is an “approach to systems

design and development that aims to make interactive

systems more usable by focusing on the use of the

system and applying human factors/ergonomics and

usability knowledge and techniques” (see Fig. 1).

Goal-oriented co-adaptation focuses instead on
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Figure 1: Performance and usability goals according to dif-
ferent HMI approaches. The separation between progres-
sive co-adaptation and human-centered design should hap-
pen once performance is approaching a plateau.

designing a user interface that can be exploited at

its maximum potential. This approach makes the as-

sumption that the user is very skilled in performing

the task. The drawback is that only well trained users

can benefit from the adaptability of the system. A

typical example of this approach is the use of joy-

sticks to operate an excavator. Joysticks are widely

used as human-machine interfaces in many applica-

tions of excavators, cranes, forklifts, electric-powered

wheelchairs, and telemanipulated robots due to their

reliability, ergonomy, and low cost. For some of these
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applications (e.g. excavators) the operator is required

to undergo an extensive training as the mapping be-

tween the master device (joysticks) and the slave end-

effector (shovel) can be counterintuitive. Another ex-

ample of goal-oriented approach in a different domain

is The vOICe, a mobile assistive device for the visu-

ally impaired that converts visual images to auditory

signals (Ward and Meijer, 2010). In this case, given

the richness of the information, the system requires

long periods of training and user adaptation to the in-

herent cognitive load.

Performances and usability during interaction

evolve in a different way depending on the selected

approach, with human-centered design prioritizing

usability increase and goal-oriented design giving

more importance to performance increments (Fig. 1).

The co-adaptation design approach aims to combine

the advantages of human-centered design with the fi-

nal performances achievable using the goal-oriented

design by creating an interface that can adapt to the

skills of the user assessed over time. It is adopted in

all those applications where long-time training is re-

quired to make the interaction efficient and reliable.

Examples of co-adaptation design can be found in

speech recognition software, gesture classifiers, and

multimodal interfaces coupling human training and

learning algorithms (Christoudias et al., 2006). Some

form of co-adaptation is embedded in collaborative

control strategies for robotic wheelchairs to determine

the user’s intention (e.g. desired destination) and ad-

just the control signals accordingly, adapting the level

of assistance based on the affordances of the sur-

roundings (Carlson and Demiris, 2012).

There are cases where co-adaptation is a require-

ment of the system. An example comes from the

field of Brain-Computer Interfaces (BCI) applied to

teleoperation applications. Electroencephalography

(EEG) signals coming from the brain are collected,

filtered, and coded in order to control a remote robot

(Bi et al., 2013). For this types of applications, co-

adaptation is necessary because the system needs to

learn how to associate desired commands with brain

signals patterns while the participant is adapting to the

novel task. The interface needs to be adaptive so to

account for changes in cortical plasticity which mod-

ify brain connectivity leading to a different neural re-

sponses. This can be obtained in several ways. Bryan

et al., for example, combined reinforcement learning

and Bayesian inference (Bryan et al., 2013). Gürel

and Mehring, instead, implemented an unsupervised-

learning decoder with a cost function derived from

neuronal recording that allows on-line adjustment of

its parameters (Gürel and Mehring, 2012).

In all these cases the interface should be able

to dynamically modify its architecture at each time

point, so to be able to optimise both long-term usabil-

ity and performance. However, existing co-adaptation

approaches are usually biased towards goal-oriented

or human-centered interface improvements, which

unavoidably lead to similar plateaus typical of non-

adaptive solutions.

The main contributions of this paper is the defi-

nition and formalization of a new paradigm in HMI,

named progressive co-adaptation. A progressive co-

adaptive interface is one that incorporates two func-

tions: self-adaptation of the interface to the actual

user skills, and simultaneous training of the user in or-

der to increase long-term performances. The concept

is discussed for two potential case scenarios, namely

a robotic telemanipulation task and an active vision

system for the visually impaired, which could both

benefit from this novel approach.

2 CO-ADAPTATION IN TASKS

INVOLVING HUMAN

MOTOR-LEARNING SKILLS

In master-slave teleoperation implementations, the

adaptation of the interface can take place for several

reasons and at multiple levels. The control needs to

account for various parameters, including time-delay

(to increase performance and keep the system stable)

(Chen et al., 2014), operator model uncertainties (re-

lated to human body impedance, not to cognitive or

skill aspects) (Chan et al., 2014), and environment

force uncertainties (Passenberg et al., 2010). Potential

control problems are usually avoided by using classic

control approaches (Hokayem and Spong, 2006) or

with more advanced control techniques such as adap-

tive admittance control (Love and Book, 2004) or

impact stabilization controllers (McAree and Daniel,

2000). In all these applications, the interface adapts

immediately to the human and environment condi-

tions to optimize the quality of the performed action

in terms of transparency, stability, and reliability. Hu-

man adaptation of course still takes place, but it is not

taken into account as a direct key-parameter to pro-

mote a modification of the interface.

If we indicate with χ the set of parameters that

characterize the interface and that can be adjusted in

order to adapt the interface to the human, then we can

write the following:

χ = f (Σ) (1)

where Σ represents the group of measurable parame-

ters related to the aforementioned time-delay during
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telemanipulation, operator model uncertainties, envi-

ronment force uncertainties, stability parameters, etc.

To elucidate this equation, we consider the mouse

of a computer as an example. Such a control inter-

face maps the two-dimensional motion on a surface

to command a pointer on a display. For this interface,

χ represents the speed parameter, the ratio between

displacement of the cursor on the screen and displace-

ment of the mouse on the surface.

Interface adaptation can take place at different

levels and it can be prompted by parameters related

to the operator skills. In master-slave teleopera-

tion scenarios, the term Human Adaptive Mechatron-

ics (HAM) indicates those interfaces that “are aimed

to assisting the human according to his or her skill

level by changing their own functions”(Harashima

and Suzuki, 2010). For example, Furuta et al. pro-

posed a haptic interface for operating a pendulum-

like juggling slave mechanism (Furuta et al., 2011;

Furuta, 2003) where a dedicated module provides a

correction force controller to assist the human oper-

ator. Igarashi et al. proposed a graphical user inter-

face, provided with effective alert functions, to reduce

operator’s misrecognition in a teleoperation task of a

quadruped robot (Igarashi et al., 2005). Alert infor-

mation is modulated depending on the human sensi-

tivity to the features of the graphical user interface.

In this kind of applications it is necessary to per-

form a direct measure of the humans’ skills (Suzuki

et al., 2013) in terms of social abilities, planning,

cognitive functions, dexterity, sensory-motor perfor-

mance, or their combination. For this, models of

human behavior models are required (Cui and Hua,

2013). Mavridis et al., for example, introduced a met-

ric to evaluate operator’s skills involved the teleoper-

ation of a robot controlled by two joysticks. The met-

ric considers kinematic parameters and is correlated

to facial expression analysis (Mavridis et al., 2015b;

Mavridis et al., 2015a). Suzuki et al. monitored the

learning process involved in a bimanual teleoperation

tasks (the tracking of two markers on a screen) by

evaluating the tracking errors (Suzuki et al., 2008).

Human skills can also be monitored by assistive tech-

nologies. In Hoey et al. (Hoey et al., 2010), for exam-

ple, a vision-based system for automated handwash-

ing assistance monitored the psychological state of a

person with dementia to adapt accordingly. An alter-

native, indirect estimate of activity can be obtained

by monitoring brain activity through EEG or Near-

infrared spectroscopy (Ishikuro et al., 2014).

To emphasize the key role of quantitative indexes

in the interface adaptation process related to human

skills, eq. 1 can be modified as follows:

χ = f (Σ,Φ) (2)

where Φ represents the set of measurable parame-

ters related to human skills. Note that in the human-

centered design approach, the interface adjusts its pa-

rameters on-the-fly, as expressed by eq. 2. On the

contrary, eq. 1 refers to the goal-oriented approach,

where the interface does not account for the user

skills. Back to the mouse example, Φ could be the

average of the inverse of the error between the desired

and the actual pointer position over a training section.

Following eq. 2, it is therefore necessary to introduce

a metric that explicitly measures human skills over

time.

3 PROGRESSIVE

CO-ADAPTATION

All previously described adaptive techniques rely on

the assumption that: a) there exists a relationship be-

tween the actual interface architecture (χ) and the hu-

man skills (Φ), and b) that the mapping between the

two aspects is static and known a priori. In other

words, adaptive techniques assume that there is a

proper interface for each skill level of the user. How-

ever, as the inventor of the mouse Douglas Engelbart

wisely stated: “if ease of use was the only valid cri-

terion, people would stick to tricycles and never try

bicycles”. Indeed other factors, like the maximization

of the overall performance, should be considered.

To achieve this, the relationship between the in-

terface parameters χ and the human skills Φ can be

defined as being dynamic rather than static:

χ = f (Σ,Φ, t) (3)

where t is the time, which becomes a key parameter

in the design of the interface. For example, the mouse

speed (i.e. χ parameter) could be linearly increased

with time (χ = Costant× t ). This simple strategy is

meant to train non-skilled users over a long-time pe-

riod. Note that, in the context of eq. 3, the adaptation

rate of the interface
dχ

dt
has to be properly calibrated,

since it affects the stability of the system (Merel et al.,

2013) as well as the final achievable performances of

the human-machine interaction.

Another aspect that needs to be considered in a dy-

namic mapping interface is when the user is not able

to improve the task performance (e.g. because of the

limitation of the current interface parameters). This

can be monitored by observing the term dΦ
dt

, which

captures changes in the human skills Φ. The interface

can change to accommodate lacks of performance im-

provement, for example by linking the interface adap-

tation rate to dΦ
dt

. Therefore, the co-adaptation inter-
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face can be described as follows:

χ = f

(

Σ,Φ,
dΦ

dt
, t

)

(4)

Such equation is the general representation of the re-

quirements of interfaces based on the notion of pro-

gressive co-adaptation, characterized by gradual but

steady improvements. In practice, the separation be-

tween progressive co-adaptation and human-centered

design should happen once the performance is ap-

proaching a plateau and dΦ
dt

in eq. 4 decreases. In

the following sections we will analyze two scenarios

where the framework captured by this equation can be

applied.

4 APPLICATION #1:

TELEMANIPULATION

An interface for teleoperation is made up of several

“layers”, each one with parameters that need to be

modified over time for the co-adaptation to take place,

even at the hardware level (Jin et al., 2014).

Operation performance depends not only on the

mapping between slave DoFs and operator’s DoFs

(DoFs of the hands and/or arms involved in the re-

mote operation), but also on several other geometric

and control parameters, such as control gain (Huys-

mans et al., 2006) and stiffness (Oliver et al., 2006).

To become the operator of heavy equipments, trainee

require extensive training because of the counterin-

tuitive and demanding cognitive mapping. Training

simulators are often employed to reduce cost and

time requirements. We believe that the parameters

involved in teleoperation training can be modified

over time according to the progressive co-adaptation

paradigm in order to improve the effectiveness of the

training procedures.

This approach can be applied to the domain of

multi-robot teleoperation and, in particular, to the

case of three n-DoFs independent serial robots tele-

operated by a sole operator. To solve this issue we

propose a control strategy based on a mixed control

involving the Direct Rate control and the Resolved

Position Control.

In the Direct Rate control manipulator there is a

direct correspondence between each DoF of the mas-

ter and each manipulator joint velocity. In this way,

the master position is interpreted as a velocity com-

mand for the manipulator joint. Therefore the veloc-

ity can vary linearly with respect to the master po-

sition. Typically, this approach is used in excavators

and cranes because the joystick position directly com-

mands the hydraulic valve opening. In fact, there ex-

ists a linear relationship between the manipulator joint

speed and the valve opening. In the Resolved Position

Control, instead, the mapping is simply between each

master DoF and the spatial DoFs of the manipulator.

s1 s3
s2

l i

h2
h1

q i

Figure 2: DoFs mapping between the 3 robots slave system
and the two operator’s hand poses.

The two approaches can be combined as shown in

Fig. 2. A vision-based tracking device or a two glove-

based master measures the positions of the operator’s

fingers. The two thumb poses h1 and h2 are used to

control the end-effectors of two robots s1 and s2 ac-

cording to a Resolved Position Control approach.

The third robot is controlled in a direct rate con-

trol mode by the other fingers. Let q̇i be the command

speed of each joint of the robot and li the distance of a

fingertip from the origin of the frame h1 (or h2). The

control role of each robot’s joint is given then by the

set of relations:

q̇i = ki(li− li0) (5)

where ki and li0 are parameters to be defined which

characterize the human-robot interface. Therefore,

in this case, the vector of the interface parameters is

χ = {k1, ...,kn, l10, ..., ln0}. The latter can be adjusted

adopting the proposed progressive co-adaptation ap-

proach.

For this application, we assume that the data trans-

fer time-delays between the master device and the

slave are negligible. Moreover, we assume that the

slave system operates in a structured environment.

Under these conditions, the parameter Σ in eq. 4 is

not relevant to the adjusting process and can be omit-

ted. Instead, we need to define a metric to measure

the operator’s motor skills Φ over time. Let ē be the

error defined as the sum of the distance of the three

end-effector poses s1, s2 and s3 from target poses im-

posed by the specific task s1task
, s2task

and s3task
. The

skills parameter Φ can be defined then as the average

of the inverse error 1/ē during each training section.

One possible progressive co-adaptation function

could be implemented by increasing the parameters
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k1, ...kn by a constant value every time dΦ
dt

drops be-

low a given threshold ε. In this way, as the user’s skills

tend to reach a plateau over time (additional training

will not produce effects on motor skills), the interface

parameters are adjusted in order to increase the over-

all performance of the human-robot interaction.

The co-adaptation process ends when no further

operator’ skill improvements are registered. This

strategy would guarantee a stepwise training phase.

5 APPLICATION #2: ACTIVE

VISION

Another domain where co-adaptation can be applied

is with mobile cyber-physical systems, in particular

those addressing the fundamental problem of active

vision with human-in-the-loop. The preliminary work

in (Bellotto, 2013), for example, proposes a multi-

modal interface for handheld cameras devised to im-

prove the navigation experience of the visually im-

paired. Such interface enables the user to point a

smartphone’s camera towards features of the environ-

ment facilitating for example navigation tasks like ob-

stacle detection or place localization. In this scenario,

co-adaptation between user and mobile device is par-

ticularly challenging due to the unpredictability of hu-

man motion and sensor uncertainty.

Active vision with human-in-the-loop is related to

the classic problem of active perception, where the

goal is to find models and control strategies that can

facilitate the execution of a task (Bajcsy, 1988). In

particular, the processes involved can be represented

by a closed-loop system, in which the feedback from

the mobile device and the vision algorithms are con-

verted into “control signals” for the user to execute.

The goal is to orient the camera towards particular ob-

jects or features in the environment, whose locations

are used as reference for the system. Fig. 3 illustrates

the concept. The input r is the reference provided,

for example, by some obstacle detection or a place lo-

calization algorithm, giving the direction of a visual

target the camera should be pointing at. The error e

between the reference and the actual orientation y of

the camera is used by the controller C to generate the

control signal u.

Typical active vision systems are concerned with

the optimal control of some electro-mechanical de-

vice that regulates the internal and/or external cam-

era’s parameters, like position, orientation, focal

length, etc. (Rivlin and Rotstein, 2000). Active vision

with human-in-the-loop, instead, tries to control the

output of the whole human-camera subsystem, illus-

trated in Fig. 3 by block H and P respectively. Within

C H P
ur e u* y

Figure 3: Feedback configuration with human-in-the-loop.
The error e is the difference between the input reference r
and system’s output y. The control signal u is generated by
the controller C to act on the human H. The latter moves
the smartphone camera P through another control signal u∗.

this subsystem, the control signal u∗ corresponds to

the torque applied by the human to the handheld cam-

era to change its direction and orientation.

In (Bellotto, 2013), a possible multimodal inter-

face was proposed. The system’s goal is to convey

information that needs to be transmitted from the con-

trol algorithm C to the user, i.e. to define a “signal”

u that, at least in most of the cases, can be interpreted

correctly by the person within a reasonable time. An

important aspect of this multimodal interface was the

combination of vibrations, 3D sounds and vocal mes-

sages (on bone-conduction headphones) to instruct

the user while pointing the smartphone’s camera to-

wards a visual target. The most efficient combina-

tion of the three modalities, as well as their individual

tuning, can be achieved only by taking into account

the long-term co-adaptation of the human-smartphone

system.

The problem can be framed in the progressive co-

adaptation paradigm of eq. 4 by first defining the pa-

rameters of the smartphone’s interface χ. These in-

clude the position ps of the 3D sound source corre-

sponding to the visual target, as well as the frequen-

cies { fv, fs, fm} and the amplitudes {av,as,am} of the

vibrations, 3D sounds and vocal messages respec-

tively. For example, fm would be the average num-

ber of vocal messages generated by the system within

a fixed time interval, while am would be the volume

they are played at. Together, these parameters define

the whole interface χ = {ps, fv, fs, fm,av,as,am}.

Leaving aside the parameters Σ related to time-

delays etc., the next important element is the user

“pointing” skill Φ. One way to measure this is to com-

pute the average error ē of the control loop in Fig. 3

for a fixed time interval, then take its inverse (i.e. the

smaller the error, the more skilled the user is).

As in the previous application, the interface pa-

rameters could be adjusted by increasing the value of

one or more of them whenever dΦ
dt

goes below a given

threshold ε. For example, if during training the user

does not improve in pointing the camera to the correct

direction (i.e. dΦ
dt

< ε), the frequency fm of the vocal

messages could increase to better assist him/her in the
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task. Note that in general there is not a linear relation

between interface and skills parameters, and the map

from one to the other can be much more complex than

the examples provided here.

6 CONCLUSIONS

In this paper we proposed a general framework

for the description of interface design for human-

machine interaction tasks involving motor-learning

skills. In particular, two well-established approaches,

the goal-oriented approach and human-centered ap-

proach, have been reviewed. Their advantages and

drawbacks have been analyzed in terms of usabil-

ity and performance, considering also their temporal

evolution.

During the training phase of every long-term

human-machine interaction, a process of neuroplas-

ticity occurs: the user adapts to the interface and

his/her motor skills improve. If, at the same time,

the interface adjusts its characteristic parameters, the

whole process can be referred to as a process of co-

adaptation. The analysis of time-adjusting interfaces

coming from the literature reveals that the temporal

evolution of the parameters related to co-adaptation

(and in particular to the user’s performance) has not

been fully exploited. In particular, the role of time-

related indexes that capture changes in motor and cog-

nitive abilities of the user has been overlooked.

A novel approach named progressive co-

adaptation is proposed to fill the gap. In this

framework, human performance is continuously

monitored and the system makes inferences about

changes in the users’ cognitive and motor skills. As

argued in the paper, progressive co-adaptation at-

tempts to combine the advantages derived from both

the goal-oriented and human-centered approaches,

while it mitigates their drawbacks. Indeed, for a

more effective long-term co-adaptation process, the

interface should be able to predict and adjust its

parameters according to the evolution of human skills

and performance (and not only to the actual ones).

To validate the proposed approach we plan to im-

plement it for two practical applications of teleoper-

ation and assistive technology, namely robotic tele-

manipulation and active vision for the visually im-

paired. For both cases, initial challenges have been

described and potential solutions based on progres-

sive co-adaptation have been discussed. We are rea-

sonably confident that future research in this direc-

tion will highlight the advantages of the proposed ap-

proach.
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