MAAT high altitude cruiser feeder airship concept

Smith, Tim and Bingham, Chris and Stewart, Paul and Allarton, Rich and Stewart, Jill (2012) MAAT high altitude cruiser feeder airship concept. In: Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), 2012, 16-18 October 2012, Bologna, Italy.

Full content URL: http://dx.doi.org/10.1109/ESARS.2012.6387386

Full text not available from this repository.

Item Type:Conference or Workshop contribution (Paper)
Item Status:Live Archive

Abstract

The paper presents results of preliminary investigations in the development of a new class of airship. Specific focus is given to photo-electric harvesting as a primary energy source, power architectures and energy audits for life support, propulsion and ancillary loads to support the continuous daily operation of the primary airship (cruiser) at stratospheric altitudes (~15km). The results are being used to drive the requirements of the FP7 Multibody Advanced Airship for Transport (MAAT) programme, which is to globally transport both passengers and freight using a 'feeder- cruiser' concept. It is shown that there is a potential trade off to traditional cost and size limits and, although potentially very complex, a first order approximation is used to demonstrate sensitivities to the economics of the lifting gas. This presented concept is substantially different to those of conventional aircraft due to the airship size and the inherent requirement to harvest and store sufficient energy during "daylight" operation to guarantee safe operation during "dark hours". This is particularly apparent when the sizing of the proposed electrolyser is considered, as its size and mass increases nonlinearly with decreasing daylight duty. The study also considers the integration of photo voltaics with various electrical architectures, in safety critical environments. A mass audit is also included that shows that if the electrolyser were omitted in such systems, the overall impact will be small compared to structural and propulsion masses.
It should be noted that although the technology bias is application specific, the underlying principles are much widely applicable to other energy harvesting and power management sectors.

Keywords:Airships, Power systems, Electrical Systems
Subjects:H Engineering > H631 Electrical Power Generation
Divisions:College of Science > School of Engineering
ID Code:7223
Deposited On:09 Jan 2013 12:14

Repository Staff Only: item control page