Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension

Lane, K. B. and Machado, R. D. and Pauciulo, M. W. and Thomson, J. R. and Phillips, J. A. and Loyd, J. E. and Nichols, W. C. and Trembath, R. C. (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nature Genetics, 26 (1). pp. 81-84. ISSN 1061-4036

Documents
Machado_NatGen2000.pdf
[img]
[Download]
Request a copy
[img] PDF
Machado_NatGen2000.pdf - Whole Document
Restricted to Repository staff only

515kB

Official URL: http://www.nature.com.proxy.library.lincoln.ac.uk/...

Abstract

Primary pulmonary hypertension (PPH), characterized by obstruction of pre-capillary pulmonary arteries, leads to sustained elevation of pulmonary arterial pressure (mean >25 mm Hg at rest or >30 mm Hg during exercise). The aetiology is unknown, but the histological features reveal proliferation of endothelial and smooth muscle cells with vascular remodelling (Fig. 1). More than one affected relative has been identified in at least 6% of cases (familial PPH, MIM 178600). Familial PPH (FPPH) segregates as an autosomal dominant disorder with reduced penetrance and has been mapped to a locus designated PPH1 on 2q33, with no evidence of heterogeneity. We now show that FPPH is caused by mutations in BMPR2, encoding a TGF-beta type II receptor (BMPR-II). Members of the TGF-beta superfamily transduce signals by binding to heteromeric complexes of type I and II receptors, which activates serine/threonine kinases, leading to transcriptional regulation by phosphorylated Smads. By comparison with in vitro studies, identified defects of BMPR-II in FPPH are predicted to disrupt ligand binding, kinase activity and heteromeric dimer formation. Our data demonstrate the molecular basis of FPPH and underscore the importance in vivo of the TGF-beta signalling pathway in the maintenance of blood vessel integrity.

Item Type:Article
Additional Information:Primary pulmonary hypertension (PPH), characterized by obstruction of pre-capillary pulmonary arteries, leads to sustained elevation of pulmonary arterial pressure (mean >25 mm Hg at rest or >30 mm Hg during exercise). The aetiology is unknown, but the histological features reveal proliferation of endothelial and smooth muscle cells with vascular remodelling (Fig. 1). More than one affected relative has been identified in at least 6% of cases (familial PPH, MIM 178600). Familial PPH (FPPH) segregates as an autosomal dominant disorder with reduced penetrance and has been mapped to a locus designated PPH1 on 2q33, with no evidence of heterogeneity. We now show that FPPH is caused by mutations in BMPR2, encoding a TGF-beta type II receptor (BMPR-II). Members of the TGF-beta superfamily transduce signals by binding to heteromeric complexes of type I and II receptors, which activates serine/threonine kinases, leading to transcriptional regulation by phosphorylated Smads. By comparison with in vitro studies, identified defects of BMPR-II in FPPH are predicted to disrupt ligand binding, kinase activity and heteromeric dimer formation. Our data demonstrate the molecular basis of FPPH and underscore the importance in vivo of the TGF-beta signalling pathway in the maintenance of blood vessel integrity.
Keywords:BMPR2, Pulmonary arterial hypertension, Gene identification
Subjects:C Biological Sciences > C431 Medical Genetics
Divisions:College of Science > School of Life Sciences
ID Code:6332
Deposited By: Rajiv Machado
Deposited On:01 Oct 2012 20:57
Last Modified:13 Mar 2013 09:15

Repository Staff Only: item control page