Functional analysis of a group A streptococcal glycoside hydrolase Spy1600 from family 84 reveals it is a β-N-acetylglucosaminidase and not a hyaluronidase

Sheldon, William L. and Macauley, Matthew S. and Taylor, Edward J. and Robinson, Charlotte E. and Charnock, Simon J. and Davies, Gideon J. and Vocadlo, David J. and Black, Gary W. (2006) Functional analysis of a group A streptococcal glycoside hydrolase Spy1600 from family 84 reveals it is a β-N-acetylglucosaminidase and not a hyaluronidase. Biochemical Journal, 399 . pp. 241-247. ISSN 0264-6021

Documents
etaylor_15.pdf
[img]
[Download]
[img]
Preview
PDF
etaylor_15.pdf - Whole Document

471Kb

Official URL: http://dx.doi.org/10.1042/BJ20060307

Abstract

Group A streptococcus (Streptococcus pyogenes) is the causative agent of severe invasive infections such as necrotizing fasciitis (the so-called 'flesh eating disease') and toxic-shock syndrome. Spy1600, a glycoside hydrolase from family 84 of the large superfamily of glycoside hydrolases, has been proposed to be a virulence factor. In the present study we show that Spy1600 has no activity toward galactosaminides or hyaluronan, but does remove beta-O-linked N-acetylglucosamine from mammalian glycoproteins--an observation consistent with the inclusion of eukaryotic O-glycoprotein 2-acetamido-2-deoxy-beta-D-glucopyranosidases within glycoside hydrolase family 84. Proton NMR studies, structure-reactivity studies for a series of fluorinated analogues and analysis of 1,2-dideoxy-2'-methyl-alpha-D-glucopyranoso-[2,1-d]-Delta2'-thiazoline as a competitive inhibitor reveals that Spy1600 uses a double-displacement mechanism involving substrate-assisted catalysis. Family 84 glycoside hydrolases are therefore comprised of both prokaryotic and eukaryotic beta-N-acetylglucosaminidases using a conserved catalytic mechanism involving substrate-assisted catalysis. Since these enzymes do not have detectable hyaluronidase activity, many family 84 glycoside hydrolases are most likely incorrectly annotated as hyaluronidases.

Item Type:Article
Additional Information:Group A streptococcus (Streptococcus pyogenes) is the causative agent of severe invasive infections such as necrotizing fasciitis (the so-called 'flesh eating disease') and toxic-shock syndrome. Spy1600, a glycoside hydrolase from family 84 of the large superfamily of glycoside hydrolases, has been proposed to be a virulence factor. In the present study we show that Spy1600 has no activity toward galactosaminides or hyaluronan, but does remove beta-O-linked N-acetylglucosamine from mammalian glycoproteins--an observation consistent with the inclusion of eukaryotic O-glycoprotein 2-acetamido-2-deoxy-beta-D-glucopyranosidases within glycoside hydrolase family 84. Proton NMR studies, structure-reactivity studies for a series of fluorinated analogues and analysis of 1,2-dideoxy-2'-methyl-alpha-D-glucopyranoso-[2,1-d]-Delta2'-thiazoline as a competitive inhibitor reveals that Spy1600 uses a double-displacement mechanism involving substrate-assisted catalysis. Family 84 glycoside hydrolases are therefore comprised of both prokaryotic and eukaryotic beta-N-acetylglucosaminidases using a conserved catalytic mechanism involving substrate-assisted catalysis. Since these enzymes do not have detectable hyaluronidase activity, many family 84 glycoside hydrolases are most likely incorrectly annotated as hyaluronidases.
Keywords:β-N-acetylglucosaminidase, mammalian glycoproteins, Spyl600, substrate-assisted catalysis
Subjects:C Biological Sciences > C700 Molecular Biology, Biophysics and Biochemistry
Divisions:College of Science > School of Life Sciences
ID Code:6165
Deposited By: Edward Taylor
Deposited On:18 Sep 2012 11:23
Last Modified:13 Mar 2013 09:13

Repository Staff Only: item control page