FPGA implementation of Naive Bayes classifier for visual object recognition

Meng, Hongying and Appiah, Kofi and Hunter, Andrew and Dickinson, Patrick (2011) FPGA implementation of Naive Bayes classifier for visual object recognition. In: Seventh IEEE Workshop on Embedded Computer Vision, 20-25 June 2011, Colorado Springs.

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1109/CVPRW.2011.5981831

Abstract

In this paper, a Naive Bayes classifier was simplified and implemented as a multi-class classification tool for binary
feature vectors. It was designed on FPGA using very limited hardware resources and runs quickly and efficiently in both training and testing phases. It was first tested on a handwriting digital number dataset, and then applied in the
visual object recognition on a single FPGA based visual surveillance system. It was compared with a binary Self Organizing Map (bSOM) using tri-states operation on FPGA, and the experimental results demonstrated both its higher
performance and lower resource usage on the FPGA chip.

Item Type:Conference or Workshop Item (Paper)
Keywords:FPGA, Bayes Classifier, Recognition
Subjects:G Mathematical and Computer Sciences > G700 Artificial Intelligence
G Mathematical and Computer Sciences > G740 Computer Vision
Divisions:College of Science > School of Computer Science
ID Code:4381
Deposited By:INVALID USER
Deposited On:08 Apr 2011 18:18
Last Modified:02 Aug 2013 08:35

Repository Staff Only: item control page