Introduction to Linear Dynamical Systems and Linear Control Strategies

Presenter: Dr. Bingo Wing-Kuen Ling
Lecturer, Centre for Digital Signal Processing, Department of Electronic Engineering, King’s College London.
Email address: wing-kuen.ling@kcl.ac.uk
Acknowledgements

- Prof. Li Qiu (HKUST)—Linear control theory, multivariable control theory, robust control theory, sampled-data systems and multirate control theory
- Dr. Li-Xin Wang (HKUST)—Fuzzy control theory, neural networks and genetic algorithms
- Prof. Xiren Cao (HKUST)—Stochastic control theory
- Prof. Zexiang Li (HKUST)—Robotics
- Dr. Bertram Shi (HKUST)—Nonlinear control theory and cellular neural networks
- Prof. Guanrong Chen (CityU)—Chaos control theory
- Prof. Xinghuo Yu (RMIT)—Sliding mode control theory
- Dr. Peter Kwong-Shun Tam (PolyU)—Adaptive control theory
- Prof. Kok-Lay Teo (CurtinU)—Optimal control theory and impulsive control theory
Outline

- Linear Time Invariant Systems
- Linear Time Invariant Feedback Controls
 - Pole Placement Approach
 - State Feedback
 - Output Feedback
- Linear Multirate Systems
- Control of Linear Multirate Systems via Filter Banks Approach
- Conclusions
- Questions and Answers
Linear Time Invariant Systems

- Definition of linear systems
 \[\sum_{i=0}^{N} a_i y_i(k) = T \left(\sum_{i=0}^{N} a_i u_i(k) \right) \]

- Definition of time invariant systems
 \[y(k-1) = T(u(k-1)) \]

- Definition of linear time invariant systems

 A system is both linear and time invariant.
Linear Time Invariant Systems

- Definition of an impulse response
 \[h(k) \equiv T(\delta(k)) \]
 where \[\delta(k) \equiv \begin{cases} 1 & k = 0 \\ 0 & \text{otherwise} \end{cases} \]

- Definition of a frequency response
 \[y(k) \equiv T(e^{j\omega k}) \]
Linear Time Invariant Systems

- Properties of linear time invariant systems
 - A system is linear and time invariant if and only if
 \[y(n) = \sum_{k \in \mathbb{Z}} h(k)u(n - k) \]
 - A system is linear and time invariant if and only if
 \[Y(z) = H(z)U(z) \]
 where
 \[Y(z) = \sum_{n \in \mathbb{Z}} y(n)z^{-n} \]
 \[H(z) = \sum_{n \in \mathbb{Z}} h(n)z^{-n} \]
 \[U(z) = \sum_{n \in \mathbb{Z}} u(n)z^{-n} \]
Linear Time Invariant Systems

- Characterization of linear time invariant systems
 - Constant linear coefficients difference equations
 \[\sum_{i=0}^{N} a_i y(k-i) = \sum_{j=0}^{M} b_j u(k-j) \]
 - Transfer function
 \[H(z) = \frac{\sum_{j=0}^{M} b_j z^{-j}}{\sum_{i=0}^{N} a_i z^{-i}} \]
 - State space representation
 \[
 \begin{align*}
 x(k+1) &= Ax(k) + Bu(k) \\
 y(k) &= Cx(k) + Du(k)
 \end{align*}
 \]
Linear Time Invariant Systems

- Responses

\[x(k) = A^k x(0) + \sum_{j=0}^{k-1} A^{k-1-j} Bu(j) \quad \forall k \geq 1 \]
\[y(k) = CA^k x(0) + C \sum_{j=0}^{k-1} A^{k-1-j} Bu(j) + Du(k) \quad \forall k \geq 1 \]

zero input response zero state response

\[y(n) = \sum_{\forall k \in \mathbb{Z}} h(k) u(n-k) \]
Linear Time Invariant Systems

- **Similarity transforms**
 - **Define**
 - $\tilde{x}(k) \equiv T^{-1}x(k)$
 - $\tilde{A} \equiv T^{-1}AT$
 - $\tilde{B} \equiv T^{-1}B$
 - $\tilde{C} \equiv CT$
 - **then**
 - $\tilde{x}(k+1) = \tilde{A}\tilde{x}(k) + \tilde{B}u(k)$
 - $y(k) = \tilde{C}\tilde{x}(k) + Du(k)$
Linear Time Invariant Systems

- Only three types of behaviors for autonomous response:
 - converge to zero (all system poles are strictly inside the unit circle.)
 - oscillates (Some system poles are on the unit circle, while all other system poles are strictly inside the unit circle.)
 - diverge to infinity (Some system poles are outside the unit circle.)
Linear Time Invariant Systems

- Autonomous responses
Linear Time Invariant Systems

Effects on initial conditions

Behaviors only depend on the system poles, not on initial conditions.
Pole placement

Plant transfer function

\[H(z) = \frac{N_H(z)}{D_H(z)} \]

Controller transfer function

\[F(z) = \frac{N_F(z)}{D_F(z)} \]

\[T(z) = \frac{H(z)}{1 + H(z)F(z)} = \frac{N_H(z)D_F(z)}{N_H(z)N_F(z) + D_H(z)D_F(z)} \]

\[N_H(z)N_F(z) + D_H(z)D_F(z) \text{ is stable.} \]
Linear Time Invariant Feedback Controls

- **State feedback**
 - Plant state space matrices \((A, B, C, D)\)
 - Controller state space matrices \((\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})\)

\[
x(k+1) = Ax(k) + B(u(k) - \tilde{y}(k)) \\
y(k) = Cx(k) + D(u(k) - \tilde{y}(k)) \\
\tilde{x}(k+1) = \tilde{A}\tilde{x}(k) + \tilde{B}x(k) \\
\tilde{y}(k) = \tilde{C}\tilde{x}(k) + \tilde{D}x(k) \\
y(k) = Cx(k) + D\left(u(k) - \left(\tilde{C}\tilde{x}(k) + \tilde{D}x(k)\right)\right) \\
= \left(C - DD\right)x(k) - D\tilde{C}\tilde{x}(k) + Du(k) \\
x(k+1) = Ax(k) + B\left(u(k) - \left(\tilde{C}\tilde{x}(k) + \tilde{D}x(k)\right)\right) \\
= \left(A - BD\right)x(k) - B\tilde{C}\tilde{x}(k) + Bu(k)
\]
Linear Time Invariant Feedback Controls

- **State feedback**

\[
\begin{bmatrix}
\dot{x}(k+1) \\
\ddot{x}(k+1)
\end{bmatrix} =
\begin{bmatrix}
A - B\tilde{D} & -B\tilde{C} \\
\tilde{B} & \tilde{A}
\end{bmatrix}
\begin{bmatrix}
x(k) \\
\ddot{x}(k)
\end{bmatrix} +
\begin{bmatrix}
B \\
0
\end{bmatrix} u(k)
\]

\[
y(k) =
\begin{bmatrix}
C - D\tilde{D} & -D\tilde{C}
\end{bmatrix}
\begin{bmatrix}
x(k) \\
\ddot{x}(k)
\end{bmatrix} + Du(k)
\]

\[
\begin{bmatrix}
A - B\tilde{D} & -B\tilde{C} \\
\tilde{B} & \tilde{A}
\end{bmatrix}
\]

is stable.
Linear Time Invariant Feedback Controls

Output feedback

- Plant state space matrices \((A, B, C, D)\)
- Controller state space matrices \((\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D})\)

\[
\begin{align*}
x(k+1) &= Ax(k) + B(u(k) - \tilde{y}(k)) \\
y(k) &= Cx(k) + Du(k) - \tilde{y}(k) \\
\tilde{x}(k+1) &= \tilde{A}\tilde{x}(k) + \tilde{B}y(k) \\
\tilde{y}(k) &= \tilde{C}\tilde{x}(k) + \tilde{D}y(k) \\
y(k) &= Cx(k) + D(u(k) - (\tilde{C}\tilde{x}(k) + \tilde{D}y(k))) \\
&= Cx(k) - D\tilde{C}\tilde{x}(k) + Du(k) - D\tilde{D}y(k) \\
y(k) &= \left(I + D\tilde{D}\right)^{-1} \left(Cx(k) - D\tilde{C}\tilde{x}(k) + Du(k)\right) \\
&= \left(I + D\tilde{D}\right)^{-1} Cx(k) - \left(I + D\tilde{D}\right)^{-1} D\tilde{C}\tilde{x}(k) + \left(I + D\tilde{D}\right)^{-1} Du(k)
\end{align*}
\]
Linear Time Invariant Feedback Controls

Output feedback

\[\tilde{y}(k) = \tilde{C}\tilde{x}(k) + \tilde{D}\left(\left(I + \tilde{D}\tilde{D}\right)^{-1} Cx(k) - \left(I + \tilde{D}\tilde{D}\right)^{-1} \tilde{D}\tilde{C}\tilde{x}(k) + \left(I + \tilde{D}\tilde{D}\right)^{-1} Du(k)\right) \]

\[= \tilde{D}\left(I + \tilde{D}\tilde{D}\right)^{-1} Cx(k) + \left(I - \tilde{D}\left(I + \tilde{D}\tilde{D}\right)^{-1} D\right)\tilde{C}\tilde{x}(k) + \tilde{D}\left(I + \tilde{D}\tilde{D}\right)^{-1} Du(k) \]

\[x(k+1) = Ax(k) + Bu(k) - \left(\tilde{D}\left(I + \tilde{D}\tilde{D}\right)^{-1} Cx(k) + \left(I - \tilde{D}\left(I + \tilde{D}\tilde{D}\right)^{-1} D\right)\tilde{C}\tilde{x}(k) + \tilde{D}\left(I + \tilde{D}\tilde{D}\right)^{-1} Du(k)\right) \]

\[= \left(A - \tilde{B}\left(I + \tilde{D}\tilde{D}\right)^{-1} C\right)x(k) - \left(B - \tilde{B}\left(I + \tilde{D}\tilde{D}\right)^{-1} D\right)u(k) \]

\[\tilde{x}(k+1) = \tilde{A}\tilde{x}(k) + \tilde{B}\left(I + \tilde{D}\tilde{D}\right)^{-1} Cx(k) - \left(I + \tilde{D}\tilde{D}\right)^{-1} \tilde{D}\tilde{C}\tilde{x}(k) + \left(I + \tilde{D}\tilde{D}\right)^{-1} Du(k) \]

\[= \tilde{B}\left(I + \tilde{D}\tilde{D}\right)^{-1} Cx(k) + \left(\tilde{A} - \tilde{B}\left(I + \tilde{D}\tilde{D}\right)^{-1} D\tilde{C}\right)\tilde{x}(k) + \tilde{B}\left(I + \tilde{D}\tilde{D}\right)^{-1} Du(k) \]
Linear Time Invariant Feedback Controls

Output feedback

\[
\begin{bmatrix}
 x(k+1) \\
 \tilde{x}(k+1)
\end{bmatrix} = \begin{bmatrix}
 A - B\tilde{D}(I + D\tilde{D})^{-1}C & -B\left(I - \tilde{D}(I + D\tilde{D})^{-1}D\right)\tilde{C} \\
 \tilde{B}(I + D\tilde{D})^{-1}C & \left(\tilde{A} - \tilde{B}(I + D\tilde{D})^{-1}D\tilde{C}\right)
\end{bmatrix} \begin{bmatrix}
 x(k) \\
 \tilde{x}(k)
\end{bmatrix} + \begin{bmatrix}
 B - B\tilde{D}(I + D\tilde{D})^{-1}D \\
 \tilde{B}(I + D\tilde{D})^{-1}D
\end{bmatrix} u(k)
\]

\[
\tilde{y}(k) = \begin{bmatrix}
 \tilde{D}(I + D\tilde{D})^{-1}C & \left(I - \tilde{D}(I + D\tilde{D})^{-1}D\right)\tilde{C}
\end{bmatrix} \begin{bmatrix}
 x(k) \\
 \tilde{x}(k)
\end{bmatrix} + \tilde{D}(I + D\tilde{D})^{-1}Du(k)
\]

\[
\begin{bmatrix}
 A - B\tilde{D}(I + D\tilde{D})^{-1}C & -B\left(I - \tilde{D}(I + D\tilde{D})^{-1}D\right)\tilde{C} \\
 \tilde{B}(I + D\tilde{D})^{-1}C & \left(\tilde{A} - \tilde{B}(I + D\tilde{D})^{-1}D\tilde{C}\right)
\end{bmatrix}
\]

is stable.
Linear Multirate Systems

Definition

\[y(k) = \sum_{l \in \mathbb{Z}} g(k, l)u(l) \quad \forall k \in \mathbb{Z} \]

where

\[g(k, l) = g(k + m, l + n) \quad \forall k, l \in \mathbb{Z} \]

- Input shifts by \(n \) samples, output shifts by \(m \) samples.
Linear Multirate Systems

- **Examples:**
 - Rate changers/sampled data systems

 ![rate changer diagram]

 - Filter banks

 ![filter bank diagram]
Linear Multirate Systems

- **Realization**
 - A linear multirate system can be realized by a filter bank system.
 - Define a blocked input signal as
 \[u(k) \equiv [u(nk) \quad \cdots \quad u(nk + n - 1)]^T \]
 - Define a block output signal as
 \[y(k) \equiv [y(mk) \quad \cdots \quad y(mk + m - 1)]^T \]
 - Input shifts by \(n \) samples, the blocked input signal shifts by 1 sample. Output shifts by \(m \) samples, the blocked output signal shifts by 1 sample.
 - Hence, there exists an \(m \times n \) transfer matrix \(H(z) \) such that
 \[Y(z) = H(z)X(z) \]
Linear Multirate Systems

- **Realization**

\[y[n] = \sum_{i=0}^{n-1} h_i[n] u[n-i] \]

\[H(z) = \sum_{i=0}^{n-1} h_i[n] z^{-i} \]

\[u[n] \rightarrow \downarrow n \rightarrow h_0[n] \rightarrow \downarrow n \rightarrow \cdots \rightarrow \downarrow n \rightarrow h_{n-1}[n] \rightarrow \uparrow m \rightarrow y[n] \]

\[u[n] \rightarrow \downarrow n \rightarrow \cdots \rightarrow \downarrow n \rightarrow y[n] \]
Linear Multirate Systems

Realization

- Denote \(f[kn - lm] = g[k, l] \quad \forall k, l \in \mathbb{Z} \)
- Define the map \(I : \{0,1,\ldots,m-1\} \times \mathbb{Z} \to \mathbb{Z} \) such that \(I(k,l) = kn - lm \)
- \(I \) is bijective if and only if \(m \) and \(n \) is co-prime. Or in other words, \(I \) is bijective if and only if the highest common factor of \(m \) and \(n \) is 1.
Linear Multirate Systems

- Realization

Figure 1a. Mapping from $g[n,k]$ to $f[k]$ when m and n are co-prime.
Linear Multirate Systems

- Realization

Figure 1b. Mapping from $g[n,k]$ to $f[k]$ when $n=cm$.
Linear Multirate Systems

- Realization

Figure 1c. Mapping from $g[n,k]$ to $f[k]$ when $m=cn$.
Linear Multirate Systems

- Realization

Figure 1d. Mapping from $g[n,k]$ to $f[k]$ when $m=n$.
A linear multirate system is equivalent to a rate changer if and only if m and n is co-prime. That is:
Linear Multirate Systems

Properties

- A linear multirate system is stable if and only if $h_i[n]$ for $i=0,1,\ldots,n-1$ are all stable.
- A linear multirate system is finite impulse response if and only if $h_i[n]$ for $i=0,1,\ldots,n-1$ are all finite impulse response.
Linear Multirate Systems

Realization

Block decimators (decimation ratio M and block length L)

$$y[Lk + j] = x[kML + j] \text{ for } j=0,1,\ldots,L-1 \text{ and } k \in \mathbb{Z}.$$
Linear Multirate Systems

Realization

Block expanders (expansion ratio M and block length L)

$$y[k] = \begin{cases}
 x \left(\frac{k - \text{mod}(k, ML)}{M} + \text{mod}(k, ML) \right) & \text{if } k - \text{mod}(k, ML) \leq k < k - \text{mod}(k, ML) + L \\
 0 & \text{if } k - \text{mod}(k, ML) + L \leq k < k + ML - \text{mod}(k, ML)
\end{cases}$$
Realization

∀m,n ∈ ℤ⁺ (no matter m and n are co-prime or not), all linear multirate systems (shifting input by n samples resulting to shifting an output by m samples) can be represented via a series cascade of ↑m, followed by an LTI filter with an impulse response f[k], and then followed by ↓(n,m).
Linear Multirate Systems

- **Realization**

- The input output relationship of all linear multirate systems is
 \[y[km+i] = \sum_{l=-\infty}^{+\infty} g[i, l-\text{kn}] u[l], \quad \forall k,l \in \mathbb{Z}, \forall m,n \in \mathbb{Z}^+, \text{ and } i=0,1,\ldots,m-1. \]

- The input output relationship of the system with block sampler is
 \[y[km+i] = \sum_{l=-\infty}^{+\infty} f[kmn-ml+i] u[l], \quad \forall k,l \in \mathbb{Z}, \forall m,n \in \mathbb{Z}^+, \text{ and } i=0,1,\ldots,m-1. \]

- \(\forall k,l \in \mathbb{Z}, \forall m,n \in \mathbb{Z}^+, \text{ and } i=0,1,\ldots,m-1, \) the mapping from \(\{0,1,\ldots,m-1\} \times \mathbb{Z} \) to \(\mathbb{Z} \), where \([i,l-\text{kn}] \in \{0,1,\ldots,m-1\} \times \mathbb{Z} \) and \(knm-ml+i \in \mathbb{Z} \) is bijective.
Realization

Hence, \(\forall k, l \in \mathbb{Z}, \forall m, n \in \mathbb{Z}^+ \) and \(i=0, 1, \ldots, m-1 \), there exists a unique time index \(kmn-ml+i \) corresponding to the time index \([i, l-kn] \).

As a result, there exists an LTI filter with an impulse response \(f[k] \) satisfying \(f[kmn-ml+i]=g[i, l-kn] \), \(\forall k, l \in \mathbb{Z}, \forall m, n \in \mathbb{Z}^+ \) and \(i=0, 1, \ldots, m-1 \), that the linear multirate rate systems and the system with block sampler are input output equivalent.
Linear Multirate Systems

- **Realization**
 - $\forall m, n \in \mathbb{Z}^+$ (no matter m and n are co-prime or not), all linear multirate rate systems (with shifting input by n samples resulting to shifting an output by m samples) can be represented via a series cascade of $\uparrow(m, n)$, followed by an LTI filter with an impulse response $f[k]$, and then followed by $\downarrow n$.
Realization

The input output relationship of all linear multirate systems is\[y[k] = \sum_{l=-\infty}^{\infty} \sum_{i=0}^{n-1} g[k, nl + i] u[nl + i], \forall k, l \in \mathbb{Z}, \forall m, n \in \mathbb{Z}^+ \text{ and } i=0, 1, \ldots, n-1.\]

The input output relationship of the system with block sampler is\[y[k] = \sum_{l=-\infty}^{\infty} \sum_{i=0}^{n-1} f[kn - mnl - i] u[nl + i], \forall k, l \in \mathbb{Z}, \forall m, n \in \mathbb{Z}^+ \text{ and } i=0, 1, \ldots, n-1.\]

\(\forall l \in \mathbb{Z}, \forall m, n \in \mathbb{Z}^+, k \in \{0, 1, \ldots, m-1\} \text{ and } i \in \{0, 1, \ldots, n-1\},\) the mapping from \(\{0, 1, \ldots, m-1\} \times \mathbb{Z}\) to \(\mathbb{Z}\), where \([k, nl+i] \in \{0, 1, \ldots, m-1\} \times \mathbb{Z}\) and \(kn-mnl-i \in \mathbb{Z}\) is bijective.
Linear Multirate Systems

- Realization
 - Hence, \(\forall l \in \mathbb{Z}, \forall m, n \in \mathbb{Z}^+, k \in \{0, 1, \ldots, m-1\} \) and \(i \in \{0, 1, \ldots, n-1\} \), there exists a unique time index \(kn-mnl-i \) corresponding to the time index \([k, nl+i]\).
 - As a result, there exists an LTI filter with an impulse response \(f[k] \) satisfying \(f[kn-mnl-i]=g[k, nl+i] \), \(\forall k, l \in \mathbb{Z}, \forall m, n \in \mathbb{Z}^+ \) and \(i=0, 1, \ldots, n-1 \), that the linear multirate rate systems and the system with block sampler are input output equivalent.
Linear Multirate Systems

- **Properties**

- A linear multirate system is stable if and only if \(f[n] \) is stable.
- A linear multirate system is finite impulse response if and only if \(f[n] \) is finite impulse response.
Control of Linear Multirate Systems via Filter Banks Approach

- **Plant model**

- **Controller model**
Control of Linear Multirate Systems via Filter Banks Approach

- Closed loop system model

\[U(z) \equiv \sum_{k} u(k)z^{-k} \]
\[U_i(z) \equiv \sum_{k} u(nk+i)z^{-k} \]
\[U(z) = \sum_{i=0}^{n-1} z^{-i}U_i(z^n) \]
\[P(z) \equiv \sum_{k} p(k)z^{-k} \]
\[P_i(z) \equiv \sum_{k} p(nk+i)z^{-k} \]
\[P(z) = \sum_{i=0}^{n-1} z^{-i}P_i(z^n) \]

\[U_p(z) \equiv [U_0(z) \ldots U_{n-1}(z)]^T \]
\[P_p(z) \equiv [P_0(z) \ldots P_{n-1}(z)]^T \]
Closed loop system model

\[Y(z) \equiv \sum_{k} y(k)z^{-k} \]

\[Y_i(z) \equiv \sum_{k} y(mk + i)z^{-k} \]

\[Y(z) = \sum_{i=0}^{m-1} z^{-i} Y_i(z^m) \]

\[Y_p(z) \equiv [Y_0(z) \quad \cdots \quad Y_{m-1}(z)]^T \]

\[G(z)H(z)(U_p(z) - P_p(z)) = P_p(z) \]

\[P_p(z) = (I + G(z)H(z))^{-1} G(z)H(z)U_p(z) \]
Control of Linear Multirate Systems via Filter Banks Approach

- Closed loop system model

\[Y_p(z) = H(z)(U_p(z) - P_p(z)) \]

\[= H(z)(I - (I + G(z)H(z))^{-1}G(z)H(z))U_p(z) \]

\[H(z)(I - (I + G(z)H(z))^{-1}G(z)H(z)) \text{ is stable.} \]
Conclusions

- Only three types of behaviors for autonomous response of linear time invariant systems.
- Behaviors of linear time invariant systems only depend on the system poles, not on initial conditions.
- Stability conditions based on pole placement, state feedback and output feedback of linear time invariant systems are derived.
- Linear multirate systems can be realized via a filter bank.
- When the input rate and the output rate is co-prime, then linear multirate systems can be realized via linear rate changers. Otherwise, they can be realized via block samplers.
- Stability conditions for linear multirate feedback systems are derived based on filter bank approach.
Questions and Answers

Thank you!
Let me think…