Accepted Manuscript

Contrasting Sorption Behaviours Affecting Groundwater Arsenic Concentration in Kandal Province, Cambodia

Laura A. Richards, Maria J. Casanueva-Marenco, Daniel Magnone, Chansopheaktra Sovann, Bart E. van Dongen, David A. Polya

PII: S1674-9871(19)30072-6
DOI: https://doi.org/10.1016/j.gsf.2019.02.010
Reference: GSF 826

To appear in: Geoscience Frontiers

Received Date: 22 November 2017
Revised Date: 28 December 2018
Accepted Date: 25 February 2019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
GRAPHICAL ABSTRACT

Contrasting Sorption Behaviours Affecting Groundwater Arsenic Concentration in Kandal Province, Cambodia

Richards et al.

Submitted to “Geoscience Frontiers”

2017

Graphical Abstract

Modelling of groundwater arsenic suggests partial re-equilibration of groundwater arsenic with host sediments.

This overprints signatures of earlier mobilisation of arsenic by microbiologically mediated processes.
Contrasting sorption behaviours affecting groundwater arsenic concentration in Kandal Province, Cambodia

Laura A. Richardsa, Maria J. Casanueva-Marencoa,b, Daniel Magnonec, Chansopheaktra Sovannd, Bart E. van Dongena, David A. Polyaa,*

a School of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, The University of Manchester, Williamson Building, Oxford Road, Manchester, M13 9PL, UK

b Present address: Department of Analytical Chemistry, Institute of Biomolecules, Faculty of Sciences, University of Cádiz, Cádiz, Spain

c Present address: School of Geography, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire, LN6 7TS, UK

d Department of Environmental Science, Royal University of Phnom Penh, Phnom Penh, Cambodia

*Corresponding author: david.polya@manchester.ac.uk

Thematic Issue on Chemical & Isotopic Tracers to Understand Arsenic Prone Groundwater Systems
Abstract

Natural arsenic (As) contamination of groundwater which provides drinking water and/or irrigation supplies remains a major public health issue, particularly in South and Southeast Asia. A number of studies have evaluated various aspects of the biogeochemical controls on As mobilization in aquifers typical to this region, however many are predicated on the assumption that key biogeochemical processes may be deduced by sampled water chemistry. The validity of this assumption has not been clearly established even though the role of sorption/desorption of As and other heavy metals onto Fe/Mn (hydr)oxides is an important control in As mobilization. Here, selective chemical extractions of sand-rich and clay-rich sediments from an As-affected aquifer in Kandal Province, Cambodia, were undertaken to explore the potential role of partial re-equilibrium through sorption/desorption reactions of As and related solutes (Fe, Mn and P) between groundwater and the associated solid aquifer matrix. In general, groundwater As is strongly affected by both pH and Eh throughout the study area. However, contrasting sorption behaviour is observed in two distinct sand-dominated (T-Sand) and clay dominated (T-Clay) transects, and plausibly attributed to differing dominant lithologies, biogeochemical and/or hydrogeological conditions. Sorption/desorption processes appear to be re-setting groundwater As concentrations in both transects, but to varying extents and in different ways. In T-Sand, which is typically highly reducing, correlations suggest that dissolved As may be sequestered by sorption/re-adsorption to Fe-bearing mineral phases and/or sedimentary organic matter; in T-Clay Eh is a major control on As mobilization although binding/occlusion of Fe-bearing minerals to sedimentary organic matter may also occur. Multiple linear regression analysis was conducted with groups categorised by transect and by Eh, and the output correlations support the contrasting sorption behaviours encountered in this study area. Irrespective of transect, however, the key biogeochemical processes which initially control As mobilization in such aquifers, may be “masked” by the re-setting of As concentrations through in-aquifer sorption/desorption processes.

Keywords: arsenic, groundwater, partial equilibrium, sorption, water-rock interactions, Cambodia
1. Introduction

Arsenic (As) contamination of groundwater in sedimentary aquifers of South and South East Asia has been recognized as causing “the greatest mass poisoning of a population in human history” (Smith et al., 2000). High As concentrations in groundwater have exceeded the World Health Organization (WHO) provisional guide value for drinking water (10 µg/L) by one or even two orders of magnitude (e.g. Ravenscroft et al., 2009; Polya et al., 2010; World Health Organization, 2011; Phan et al., 2014; Polya and Lawson, 2015; Polya and Middleton, 2017) including in some areas of West Bengal, Bangladesh, Cambodia and other countries of the region, where groundwater is a major source of drinking and cooking water for many rural and peri-urban dwellers. Studies of As-contaminated aquifers around the world have demonstrated that As concentrations can be controlled by complex environmental conditions and biogeochemical processes, including microbially-mediated redox reactions, adsorption/desorption, precipitation or co-precipitation and dissolution (e.g. Smedley and Kinniburgh, 2002; Islam et al., 2004; Ravenscroft et al., 2009; Al Lawati et al., 2012a, b, 2013; Wang et al., 2014; Kim et al., 2015; Polya and Lawson, 2015). The relative extent to which these various biogeochemical processes control the concentration of As in groundwater is important when considering models of As release and transport including in the context of predictive models of future changes in arsenic hazard (Michael and Voss, 2008; Radloff et al., 2011; van Geen et al., 2013). Understanding the extent to which sorption behaviours of sediments may control groundwater As distribution is important for interpreting groundwater geochemical data, guiding further research efforts as well as ultimately informing policy.

Adsorption/desorption is an important process controlling the mobility of inorganic contaminants in aquifers, sediments and soils (Goldberg et al., 2007). In particular, adsorption of As onto (hydr)oxides or carbonates, and desorption of As into aqueous solution as regulated by pH, redox potential and the presence of competitive ions, have been proposed as mechanisms regulating the natural mobilization and distribution of groundwater As (e.g. Peters, 2008; Jayed et al., 2013; Mai et al., 2014; Diwakar et al., 2015; Yang et al., 2015). Arsenic adsorbed and sequestered on Fe/Mn (hydr)oxides is one of the most common reservoirs of this element in some sedimentary basins of South and Southeast Asia (Xie et al., 2009). The reducing nature of some groundwaters can facilitate the reduction of As(V) to As(III), leading to possible desorption of As, especially as As(III) may be less strongly adsorbed by ferric (hydr)oxides than As(V) (Mayorga et al., 2013; Paul et al., 2015), although it should be noted that this may not always be the case (Dixit and Hering, 2003). Changes in the sorption capacity of ferric (Fe(III)) (hydr)oxides and their reductive dissolution are two of the major
processes controlling As concentrations (Smedley and Kinniburgh, 2002; Kim et al., 2012; Yadav et al., 2015).

Enhanced preservation of organic matter (OM) occurs in marine and terrestrial sedimentary environments through the adsorption of Fe hydroxide minerals and associated trace metals (notably Mn). In some marine sediments, up to 22±9% of the OM is directly bound to the reactive Fe phases (Lalonde et al., 2012) and in some soils sorbed OM is postulated to “mask” mineral surfaces, leading to the composition of OM being a primary control of sorption behaviours (Kaiser and Guggenberger, 2000). The surface OM exhibits a different composition to bulk OM and it is hypothesised that minerals interact with the OM through co-precipitation or chelation (Johnson et al., 2015). This absorption may be strongly linked to the grain-size of sediments as these are surface bonds (Roy et al., 2013). Lignin and humin (proto kerogen) compounds have been shown to bond to Fe minerals in this process (Kaiser and Guggenberger, 2000; Vandenbroucke and Largeau, 2007). Given the importance of absorption in As contaminated aquifers it is possible that OM absorption is an important feature in the sequestration of aqueous As.

Many studies of the origin of high As in shallow reducing groundwater are predicated by an explicit or implicit assumption that the nature of key biogeochemical processes may be deduced from sampled water chemistry. However, since groundwater systems are dynamic and As concentrations, in particular, may partially re-equilibrate through sorption/desorption processes with the sediments through which they flow, it remains unclear the degree to which such approaches are valid. This is particularly a concern where groundwater residence times of on order of years to hundreds of years or more in contrast to sorption/desorption equilibration timescales which are typically more on the order of hours to hundreds of hours.

Thus, the aim of this study was to assess the importance of such partial re-equilibration in re-setting groundwater As concentrations, in well-studied As-prone shallow reducing aquifers in Cambodia. The quantitative importance of these processes might reasonably be expected to depend in part on groundwater pH and \(Eh\) and sediment grain size (as a proxy for specific surface area) as well as on the concentrations of weakly and more strongly bound As and related components, notably Fe, Mn, and P in the solid aquifer materials. Accordingly, the objectives were to determine the concentrations of weakly and strongly bound As, Fe, Mn and P in aquifer sediments in order to assess whether, and to what extent, As concentrations in surrounding groundwaters are associated with solid phase concentrations and other plausibly relevant groundwater/sediment parameters, such as pH, \(Eh\), mean grain size (MGS) and solid
phase arsenic speciation. The methods, results and interpretation reported in this paper expand upon those briefly outlined previously (Casanueva-Marenco et al., 2016).

2. Methods and materials

2.1. Field study area

The study area is located between the Mekong and Bassac River southeast of Phnom Penh, Cambodia, in northern Kandal Province (Fig. 1). This area has been the subject of extensive and ongoing research efforts on arsenic (bio)geochemistry, particularly given the generally very high concentrations of geogenic groundwater As (Polya et al., 2003, 2005; Charlet and Polya, 2006; Tamura et al., 2007; Benner et al., 2008; Kocar et al., 2008; Papacostas et al., 2008; Polizzotto et al., 2008; Rowland et al., 2008; van Dongen et al., 2008; Polya and Charlet, 2009; Lawson et al., 2013; Richards et al., 2015; Stuckey et al., 2015a, b; Lawson et al., 2016; Magnone et al., 2017; Richards et al., 2017a,b). A detailed description of the field area including site schematic was published previously (Richards et al., 2017a). Two contrasting transects broadly oriented parallel to the inferred direction of major groundwater flow were studied, viz., a clay-dominated transect, “T-Clay”, located on floodplain deposits (sampling sites LR10, LR11, LR12, LR13 and LR14), and a sand-dominated transect, “T-Sand”, located on scroll bar deposits of former river channels (sampling sites LR01, LR02, LR03, LR04, LR05, LR06, LR07, LR08 and LR09)(Magnone et al., 2017; Richards et al., 2017a). Throughout the study area, the thickness of a surficial clay layer varies significantly (from approximately 0 – 25 m in thickness), with T-Clay generally having more continuous and clay-dominated lithology than T-Sand (Uhlemann et al., 2017).

2.2. Sediment and groundwater sampling and sample pre-treatment

The installation of boreholes and sediment sample collection was carried out using manual rotary drilling between November 2013 and February 2014 along T-Sand and T-Clay using methods previously described (Richards et al., 2015, 2017a). Wet sediment cores were collected at target intervals of each three meters of depth using a locally-designed stainless...
steel sampler during drilling. Sediment subsamples for extractions and total organic carbon (TOC), total carbon (TC) and total nitrogen (TN) analysis (Magnone et al., 2017) were placed in an aluminium foil envelope that had been pre-furnaced to 430 °C (to minimize trace contamination) and placed in a zip seal polythene bag stored anaerobically. All cores for extractions and TOC/TC/TN analysis were stored frozen and transported to the University of Manchester for further analysis at the Manchester Analytical Geochemistry Unit (MAGU). Sediment subsamples for particle size analysis were stored refrigerated in polyethylene bags until further analysis.

Groundwater samples were taken from the flushed and developed wells (Richards et al., 2015), screened over approximately 1 m at depths ranging from 6 to 45 m during pre- and post-monsoon sampling seasons in 2014 using methods previously described (Richards et al., 2017a). In brief, groundwater pH and \(Eh\) were measured \textit{in-situ} using a multimeter (Professional Plus Series Portable Multimeter, YSI) with compatible sensors and a flow cell (all YSI). Subsamples of groundwater for analysis of groundwater As (As\(_{GW}\)), Fe (Fe\(_{GW}\)) and Mn (Mn\(_{GW}\)), amongst other analytes, were filtered (0.45 µm cellulose and polypropylene syringe filters, Minisart RC, UK), acidified to pH < 2 (trace grade nitric acid, BDH Aristar, VWR, UK), and refrigerated prior to analysis at MAGU (Richards et al., 2017a). The groundwater data presented here are medians of the two sampling seasons given the seasonal fluctuations in groundwater geochemistry (Richards et al., 2017a). Full inorganic characterisation of the groundwater, including specific data for each sampling season, is provided elsewhere (Richards et al., 2017a) as is an account of \(^{3}He-^{3}H\) based model recharge rates (Richards et al., 2017b). The dataset presented in this manuscript is a subset where data were available to pair groundwater analysis with the corresponding analysis of sediments collected from the same sites and approximate depths.

2.3. Analytical methods

2.3.1. Sediment extraction procedures and analysis

Two separate single extraction procedures were applied in order to assess: (i) weakly sorbed (and associated with carbonate phases) As (As\(_{Sed,W}\)), Fe (Fe\(_{Sed,W}\)), Mn (Mn\(_{Sed,W}\)) and P (P\(_{Sed,W}\)), using glacial acetic acid (CH\(_3\)COOH, ≥ 99.85 %, Sigma Aldrich, Germany) and (ii) strongly bound As (As\(_{Sed,S}\)), Fe (Fe\(_{Sed,S}\)) and Mn (Mn\(_{Sed,S}\)) by sodium dihydrogen phosphate monohydrate (NaH\(_2\)PO\(_4\)·H\(_2\)O, EMSURE grade, MilliporeSigma, UK) solutions (Eiche et al., 2008; Casanueva-
A strongly bound P in the sediments was not determined due to the chemical nature of the extractant. Error! Reference source not found. shows a brief summary of experimental conditions carried out at each sediment extraction. The extraction solution Error! Reference source not found. was added to 1 g (± 1 mg) of wet sediment in 50 mL clean polypropylene centrifuge tubes. Sediments were weighed using an analytical scale (PS-100, Fisher Scientific, UK). The mixture was mechanically shaken (Stuart Orbital shaker SSM1, Bibby Scientific, UK) for either 16 or 24 h, depending on the extraction, at a speed of 150 rpm at room temperature Error! Reference source not found., avoiding delay between the addition of the extraction solution and the beginning of shaking. After shaking, tubes were centrifuged (MSE Mistral 1000 Centrifuge, Sanyo, UK) at 2700 rpm for 20 min to facilitate the separation between phases and subsequent extraction of the supernatant liquid into a clean centrifuge tube. The tube containing supernatant was stored in a refrigerator at approximately 4 °C until analysis. Due to the nature of the NaH$_2$PO$_4$ extraction solution, final samples were diluted (by a factor of 20), and acidified with HNO$_3$ (1%, Suprapur, Merck, Germany) before analysis. Analysis of As in sediment extracts and groundwater (Richards et al., 2017a) was performed using inductively coupled plasma mass spectrometry (ICP-MS, Agilent 7500cx); and Fe, Mn and P using inductively coupled plasma atomic emission spectrometer (ICP-AES, Perkin-Elmer Optima 5300 dual view), both located in a clean laboratory environment (Class 1000) at MAGU. Widely-used extraction procedures (e.g. modified after Ure et al., 1993; Keon et al., 2001; Eiche et al., 2008) were selected to facilitate comparison with other work.
Wet sediment was used for chemical extractions because dried sediments have been shown to over-release bound As compared to naturally wet samples and consequently do not accurately represent natural environmental conditions (Anawar et al., 2010). Explicit corrections for the variation in sediment moisture content were not made, however moisture content typically ranged from around 6% to > 30%, with clay-dominant samples of relatively low mean grain size (MGS) typically having higher moisture content than sand-dominant samples with higher MGS and lower moisture content.

2.3.2. Sedimentary TOC, TC, TN and grain size determinations

Sedimentary TOC, TC and TN were measured using an elemental analyser (Vario EL Cube, Elementar) located in the Faculty of Life Sciences, University of Manchester (Magnone et al., 2017). In brief, sediments were freeze dried and ground, and subsamples for TC and TN (approximately 20 mg) were rolled into balls prior to analysis in triplicate. Subsamples for TOC and TN were prepared and measured using the capsule method as previously described (Brodie et al., 2011). In brief, approximately 20 mg of powdered sample was weighed into silver boats, mixed with 10 µL of deionised water and heated to 50 °C. HCl (analytical reagent grade, FisherBrand, UK) was added in stepwise intervals (10, 20, 30, 50, 100 µL) to the heated silver boat. After the addition of the final aliquot the sample was dried and rolled into a ball for analysis (Brodie et al., 2011). Values of TN measured with TC and with TOC were compared to assess the influence of acidification. In the case that TOC exceeded TC but was within the range of analytical error, TOC was assumed to be equal to TC. Sediment particle size analysis was conducted on dried and sieved (< 2 mm) subsamples using laser diffraction as previously described (Richards et al., 2017a). Reported here is the mean grain size (MGS) as defined by the Folk and Ward method and determined using the Gradistat_v8 statistics package (Blott and Pye, 2001).

2.4. Quality Assurance and Quality Control (QA/QC)

Milli-Q deionised water (18.2 MΩ·cm at 25°C, Milli-Q Plus, Millipore, USA) was used for the preparation of all solutions and dilutions. All laboratory glassware was washed with Micro-90 laboratory soap (Sigma-Aldrich, UK) and rinsed with Milli-Q water to prevent contamination.
when measuring metal(loid)s at trace concentrations. Centrifuge tubes and pipette tips were soaked overnight in a 2 M nitric acid bath (Suprapur grade, Merck, Germany), rinsed thoroughly with Milli-Q water and air dried in within the fume hood to avoid possible contamination. When dried, the materials were sealed and kept in polyethylene bags until use.

In both extraction procedures, procedural blank samples (with no sediment) were carried out following the same protocol as for sediment samples. For the extraction experiments, each sediment sample was processed in duplicate, and ICP-MS and ICP-AES analysis was conducted in triplicate to assess the precision of the methods. Matrix-matched calibration standards diluted from As, Fe, Mn and P single element standard solutions (1000 mg/L, Aristar, VWR, UK) were run every ten samples. Using the reagent blank, limits of detection (LoD) and quantification (LoQ) were determined for each extractant solution and for each analyte with the corresponding technique (Error! Reference source not found.). No suitable matrix-matched certified reference material (CRM) was available for this procedure.

The QA/QC for groundwater measurements and analyses, including the use of CRMs and inverse variance weighted first order linear calibration models (Polya et al., 2017; Miller and Miller, 2010) are discussed in detail elsewhere (Polya et al., 2017; Polya and Watts, 2017; Richards et al., 2017a). For sedimentary TOC measurements, soil standards of varying carbon content (Elemental Microanalysis Cat. Nos. B2152, B2153, B2178 and B2150) were included for data quality analysis and further samples (n = 9) were sent to UKAS-accredited Elemental Microanalysis for external validation (Magnone et al., 2017).

2.5 Multiple Linear Regression (MLR) analysis

Multiple linear regression (MLR) analysis was conducted to quantitatively assess the importance of various measured parameters (Eh, pH, Fe_{GW}, As_{Sed,W}, Fe_{Sed,W}, As_{Sed,S}, Fe_{Sed,S}, TOC and MGS) in controlling As_{GW}. As_{GW} (µM) was modelled from selected variables measured: pH, Eh (mV), Fe_{GW} (µM), As_{Sed,W} (µg/g), Fe_{Sed,W} (µg/g), As_{Sed,S} (µg/g), Fe_{Sed,S} (µg/g), TOC (% w/w) and MGS (µm). The null hypothesis (H₀) was that there is no relationship between As_{GW} and a given variable, and T-values, p-values and the F-statistic were used to assess whether H₀ could be rejected at the 95% confidence level. The predictive MLR equation (Eq. 1) was

\[
As_{GW,Modelled} = m_1x_1 + m_2x_2 + \ldots + m_nx_n + c
\] (1)
where m is the coefficient of parameter n, x is the value of sub-scripted variable n and c is the residual. Unrefined models contained each of the potentially explanatory variables listed and refined models contained only those parameters which were statistically significant at the 95% confidence level. MLR offers the advantage over single correlation statistics because multiple possible explanatory variables can be considered together in MLR. The F-Statistic is reported as $F (\text{regression df, residual df}) = \text{value}; F \text{ significance } = \text{value}$, where df = degrees of freedom, and standard regression statistics are reported as $t(\text{df}) = t \text{ value}; p = p \text{ value}$. All statistical analyses were completed using the statistical packages in OriginPro 2015 and/or the Data Analysis tool pack of Microsoft Excel 2010.

3. Results and discussion

3.1. Groundwater and sediment data

The groundwater and sediment characteristics are shown in Error! Reference source not found.. The pH and Eh values of groundwater ranged from 6.7 to 7.5 (median: 6.9) and from –170 to 18 mV (median: –103 mV). As_{GW} ranged from 0.11 to 10.4 µM for T-Sand and 0.03 to 13.7 µM for T-Clay, generally increasing with depth, positively associated with Fe_{GW}, and consistent with As mobilization via reductive dissolution of Fe (hydr)oxides (Richards et al., 2017a). Further details on the characterization of inorganic aqueous geochemistry are provided elsewhere (Richards et al., 2017a).

In sediments (Error! Reference source not found. and Error! Reference source not found.), strongly bound $\text{As}_{\text{Sed,S}}$ (0.6 – 2.5 µg/g for T-Sand; 0.7 – 8.7 for T-Clay) was higher than weakly bound $\text{As}_{\text{Sed,W}}$ (0.04 – 0.26 µg/g for T-Sand; < DL – 0.98 µg/g for T-Clay). This perhaps reflects the similar geochemical behaviour of AsO_3^{3-} and PO_4^{3-}, leading to sorption of arsenate and phosphate (Feng et al., 2013; Meng et al., 2017). On the other hand, weakly bound $\text{Fe}_{\text{Sed,W}}$ (57–1700 µg/g for T-Sand; 1–620 µg/g for T-Clay) and $\text{Mn}_{\text{Sed,W}}$ (6 – 230 µg/g for T-Sand; 6–220 µg/g for T-Clay) were higher than strongly bound $\text{Fe}_{\text{Sed,S}}$ (26 – 64 µg/g for T-Sand; 8 – 31 µg/g for T-Clay) and $\text{Mn}_{\text{Sed,S}}$ (4 – 100 µg/g for T-Sand; 2–50 µg/g for T-Clay). This suggests the high tendency of these elements (e.g. Fe and Mn) to be associated with the exchangeable and carbonate fraction of the sediment instead of the strongly or specifically adsorbed As. Although slight differences in ranges were noted between T-Sand and T-Clay, the general trends between analytes was consistent between the two transects. For example, $\text{As}_{\text{Sed,S}}$ was
always higher than \(As_{sed,w} \) in both transects, even though the concentrations of both \(As_{sed,s} \) and \(As_{sed,w} \) were higher in T-Clay than in T-Sand.

3.2. Factors controlling Assorption processes

There is an overall statistically significant positive correlation between \(As_{gw} \) and pH (Error! Reference source not found.\(A; R_{adj}^2 = 0.31; t(71) = 5.8, p < 0.05 \)) as well as a negative correlation between \(As_{gw} \) and \(Eh \) (Error! Reference source not found.\(B; R_{adj}^2 = 0.19; t(71) = -4.2, p < 0.05 \)). The highest \(As_{gw} \) is observed in relatively high pH and highly reducing conditions. These overall relationships relate to the entire dataset across the entire field area; however T-Sand and T-Clay subsets show distinct behaviour. For example, many T-Clay samples fall within the lower pH range (with the exception of 4 samples at distinctly high pH) and on the higher range of \(Eh \). Conversely, most T-Sand samples fall between pH 6.9 and 7.2 and are strongly reducing in the low \(Eh \) range. There appears to be a particularly strong relationship between \(As_{gw} \) and \(Eh \) in the strongly reducing groundwaters; a correlation which becomes weaker as \(Eh \) increases. These “envelope” observations provide justification for splitting the data into groupings for further interpretation: (i) by transect (T-Sand versus T-Clay) and (ii) by \(Eh \) (“low \(Eh \”) < −75 mV versus “high \(Eh \”) > −75 mV), noting this distinction is a simplification of the broad distribution in \(Eh \) naturally encountered in such groundwaters.

The direct relationship between \(As_{gw} \) and either \(As_{sed,s} \) or \(As_{sed,w} \) is poor (Error! Reference source not found.), highlighting that the controls on As mobility are very complex and cannot be approximated by simply considering the corresponding bound sedimentary composition, and that conversely, sampled water chemistry may not be representative of key biogeochemical processes resulting in arsenic release. This is an important observation and suggests that (partial) re-equilibrium processes may be re-setting groundwater As concentrations along groundwater flow paths. This observation is particularly apparent in T-Clay, where samples containing by far the highest \(As_{sed,s} \) and/or \(As_{sed,w} \) do not necessarily correspond to the highest groundwater As concentrations. This could be plausibly attributed,
in part, to sorption/desorption processes arising particularly because of higher surface area
and lower permeabilities associated with clay sediments as well as other biogeochemical
controls such as seasonally-shifting redox conditions, pH dependent dissolution of carbonates
and the nature of the associated surface-derived or sedimentary OM (Lawson et al., 2013,
2016; Stuckey et al., 2016; Magnone et al., 2017; Richards et al., 2017a). \(\text{As}_{\text{Sed,S}} \) and \(\text{As}_{\text{Sed,W}} \) are
significantly correlated for T-Clay (Error! Reference source not found., \(R^2_{\text{adj}} = 0.54; t(9) = 3.6, p \)< 0.05), although this relationship does not hold for T-Sand. There are distinct differences
between T-Sand and T-Clay – for example, \(\text{As}_{\text{Sed,W}} \) and \(\text{As}_{\text{Sed,S}} \) vary significantly more in T-Clay
than they do in T-Sand, although this is not necessarily reflected in groundwater
concentrations. This contrasting behaviour has important implications on interpreting the
degree to which the nature of key biogeochemical processes can be accurately deduced from
sampled water chemistry and warrants examination in greater detail.

The relationship between \(\text{As}_{\text{GW}} \) and \(\text{Fe}_{\text{Sed,W}} \) (Error! Reference source not found.A) is statistically
significant for T-Sand (\(R^2_{\text{adj}} = 0.14; t(23) = -2.2, p < 0.05 \)) but not T-Clay (\(R^2_{\text{adj}} = 0.23; t(10) = 2.1,
p > 0.05 \)) which further highlights that the controls on \(\text{As}_{\text{GW}} \) are different in each transect. The
negative correlation between \(\text{As}_{\text{GW}} \) and \(\text{Fe}_{\text{Sed,W}} \) on T-Sand suggests that dissolved \(\text{As}_{\text{GW}} \) may be
sequestered by sorption/re-absorption onto Fe minerals of the sediments in this transect. In T-
Clay this correlation is not statistically significant which suggests a different process is
dominant in this transect. The distinction by transect appears to be stronger than simple
distinctions with \(\text{Eh} \) (Error! Reference source not found.B), where there is not a significant
correlation between \(\text{As}_{\text{GW}} \) and \(\text{Fe}_{\text{Sed,W}} \) for either the high \(\text{Eh} \) or low \(\text{Eh} \) group. Interestingly, this
observation is consistent with the positive correlation observed between \(\text{As}_{\text{Sed,W}} \) and \(\text{Fe}_{\text{Sed,W}} \) in
T-Sand (Error! Reference source not found.A, \(R^2_{\text{adj}} = 0.36; t(23) = 3.8, p < 0.05 \)), which is
suggestive of the importance of sorption of aqueous As(III) to Fe-bearing mineral phases in this
transect. T-Sand was the only grouping where a significant relationship between \(\text{As}_{\text{Sed,W}} \) and
\(\text{Fe}_{\text{Sed,W}} \) was observed (Error! Reference source not found.).

There is a negative correlation between MGS and \(\text{As}_{\text{Sed,W}} \) on T-Sand (Error! Reference source not found.A, \(R^2_{\text{adj}} = 0.18; t(21) = -2.4, p < 0.05 \)), indicating that finer sediments contain more
sorbed As which is expected given the greater specific surface areas of such fine sediments (and thus higher sorption capacity for most metals) (Duan et al., 2013; Li et al., 2015). This relationship does not hold on T-Clay. However, on T-Clay, there is a strong negative correlation between \(Eh \) and MGS (Error! Reference source not found.\(C, R^2_{adj} = 0.60; t(21) = -4.0, p < 0.05 \)), which means that the groundwater hosted in the finer sediments is much less reducing than in the higher MGS sediments. In this case, even though the finer sediments are likely to have higher sorption capacity and contain more weakly sorbed As (because of the higher specific surface area of the fine grains), the redox conditions might not be suitable (e.g. not sufficiently reducing) for As to be mobilized. This could offer a possible explanation for why the relationship between MGS and \(A_{\text{Sed,W}} \) is not significant on T-Clay. There are not significant correlations for either \(A_{\text{Sed,W}} \) nor \(Eh \) with MGS for the \(Eh \) groupings (Error! Reference source not found.\(B \) and \(D \), respectively).

Note that the classifications of “T-Sand” and “T-Clay” are simplified groupings and both borehole logs and separate electrical resistivity tomography studies (Uhlemann et al., 2017) indicate that there is considerable heterogeneity in these transects; for example although T-Clay generally contains higher clay content, there are isolated and localized exceptions to this, for example at site LR10 which is very sandy (hence with higher MGS) despite being located on the clay-dominated transect. Similarly, there are samples containing clay, particularly at shallower depths, on T-Sand. Further, the use of MGS as a proxy to characterize the sediment grain size is a major simplification. In reality, grain sizes are distributed across sometimes a wide range of sizes (Error! Reference source not found.) and it would be expected that the different size fractions could all contribute in varying ways to these interactions. For example, a sample with high MGS may still have significant proportions of small, high surface area grains, all of which may contribute to the bulk observed behaviour.

On T-Sand, \(A_{\text{Sed,W}} \) is correlated with sedimentary TOC (Error! Reference source not found.\(A, R^2_{adj} = 0.30; t(23) = 3.4, p < 0.05 \)), this relationship being is largely 1st order linear with increases in TOC correlated to increases in \(A_{\text{Sed,W}} \). However, on T-Clay, there appear to be two distinct trends, (i) a wide range of \(A_{\text{Sed,W}} \) when TOC is less than approximately 0.25%, and (ii) at TOC levels above this cut-off (i.e. > 0.25%), \(A_{\text{Sed,W}} \) varies with TOC in a very similar manner to what was observed on T-Sand. These patterns may indicate a degree of association of As-bearing Fe minerals to the sedimentary OM as observed elsewhere in soils (Kaiser and Guggenberger, 2000) and marine sediments (Vandenbroucke and Largeau, 2007; Lalonde et al., 2012; Johnson et al., 2015). The similarities become particularly apparent given the similar correlations with grainsize (Roy et al., 2013). It is plausible the plateauing observed in Error! Reference source
not found. is caused because As is sorbing to functional groups on the TOC surface in two scenarios: (i) when TOC is low (e.g.<0.25%) the sorption is high because the TOC contributes to the number of sorption sites and magnitude of surface area; however (ii) when TOC is relatively high (e.g. >0.25%) the TOC is mostly in the bulk phase and thus does not the availability of sorption sites for minerals might become comparatively limited.

3.3. Multiple Linear Regression (MLR) analysis

MLR was conducted to quantitatively assess the importance (or otherwise) of measured and potentially explanatory variables (Eh, pH, Fe_{GW}, As_{Sed,W}, Fe_{Sed,W}, As_{Sed,S}, Fe_{Sed,S}, TOC and MGS) in controlling As_{GW}. When MLR was conducted on the entire dataset using an unrefined model with all potentially explanatory variables, the correlation was relatively poor but statistically significant (Multiple $R = 0.74$; F (9, 27) = 3.6; F significance < 0.05) and the only statistically significant individual input was pH (A). A refined model of the entire dataset predicted As_{GW} using pH and Fe_{GW} (Multiple $R = 0.70$; F (2, 34) = 16.7; F significance < 0.05). When the dataset is split by transect, the unrefined correlations for T-Sand are stronger than for the bulk dataset (B; Multiple $R = 0.86$; F (9, 15) = 4.8; F significance < 0.05); however for T-Clay the unrefined MLR has a high multiple R but the F-statistic is not statistically significant (C; Multiple $R = 0.96$; F (9, 2) = 2.8; F significance = 0.30). The refined model for T-Sand (Multiple $R = 0.84$; F (4, 20) = 12.1; F significance < 0.05) depends on the explanatory variables pH, Fe_{Sed,W}, As_{Sed,S} and TOC; in contrast the refined model for T-Clay (Multiple $R = 0.94$; F (4, 7) = 13.9; F significance < 0.05) depends on pH, Fe_{Sed,W}, As_{Sed,W} and As_{Sed,S} as statistically significantly explanatory variables for As_{GW}. Although the explanatory variables are similar for the two transects (e.g. in both transects pH, Fe_{Sed,W} and As_{Sed,S} are important in controlling As_{GW}), the differences (e.g. the significance of TOC in T-Sand only and of As_{Sed,W} in T-Clay only) highlight distinct differences in the sorption behaviour between the two transects.
MLR-modelled values (As$_{GW,\text{Modelled}}$) are in good agreement with observed As$_{GW}$ (Error! Reference source not found.), although the modelled values show a slight overestimate at low As$_{GW}$ and a slight underestimate at high As$_{GW}$. The underestimate bias at high As$_{GW}$ could speculatively be attributed to greater possible sequestering of As$_{GW}$ via sorption/re-absorption when As$_{GW}$ concentrations are high. Note however that a high level of prediction is not unexpected given that the MLR-models are based directly on inputs from measured groundwater chemistry within the same dataset. Ideally, a predictive multivariate model should be based on a training data subset and validated using a separate, randomly selected testing data subset; however in this case the dataset when subdivided was too small to do this reliably. Because of this limitation, this model should not be interpreted as a validated predictive model but rather solely for indicative/illustrative purposes which could potentially be built upon with a larger dataset.

In addition to splitting the data by transects, MLR was also conducted with “Low Eh” and “High Eh” data subsets using both unrefined and refined models (). In highly reducing, low Eh groundwaters, As$_{GW}$ can be described by a refined MLR model taking consideration of pH and Fe$_{GW}$ only as explanatory variables (A; Multiple $R = 0.65$; $F (2, 21) = 7.7$; F significance < 0.05). The dependence of As$_{GW}$ on pH and Fe$_{GW}$ for low Eh groundwaters is similar to that of the overall dataset (A) and reflects that the majority of the groundwater in this field area is highly reducing. Interestingly, the controlling variables for As$_{GW}$ in these typical, low Eh groundwaters are characteristic of the groundwater itself and the corresponding sedimentary characteristics at the same depth have no significant influence over the observed As$_{GW}$. In contrast, in high Eh groundwaters (B), none of the evaluated variables (including both aqueous and sediment characteristics) were statistically sufficient to explain As$_{GW}$. Although the dataset is too small to conduct robust MLR analysis for groups split by both transect and Eh, such analysis may be useful given a larger dataset, particularly in high Eh groundwaters, in order to better understand the controls on As$_{GW}$ under those more oxidising geochemical conditions. Regardless of sample size limitations, the MLR analysis supports that the speculation that groundwater may be re-equilibrating with host sediments through sorption/desorption reactions, the extent of which may vary according to dominant aqueous and sedimentary geochemical and/or hydrological conditions. This heterogeneity is also reflected in the site-specific and seasonal variability in inorganic aqueous geochemistry and redox conditions (Richards et al., 2017a) and dominant groundwater recharge processes (Richards et al., 2018).
4. Conclusions

In a well-studied and heavily As-affected aquifer in Kandal Province, Cambodia, the concentrations of weakly and strongly bound As, Fe, Mn and P in the aquifer host sediment were compared to sediment mean grain size and associated groundwater composition in order to determine if, and to what extent, groundwater may be (partially) re-equilibrating with host sediments through sorption/desorption reactions. In general, pH and \(\text{Eh} \) are the dominant controls on \(\text{As}_{\text{GW}} \), which typically increases with depth and is positively associated with \(\text{Fe}_{\text{GW}} \).

Two distinct transects, T-Sand and T-Clay, show contrasting sorption behaviour which could be attributed to differing lithology (while noting the broad distribution of grain sizes that can be present even in a sand-dominated or clay-dominated sample or transect), biogeochemical and/or hydrogeological conditions. Sorption/desorption processes appear to be re-setting groundwater As concentrations, to varying extents, in both transects but particularly in T-Clay, where the very high concentrations of weakly or strongly bound As are not necessarily directly reflected in groundwater As concentrations, where generally smaller grain size (and hence greater surface area) sedimentary sequences are located and where groundwater flows are expected to be generally slower. In T-Sand, the following observations are made: (i) \(\text{As}_{\text{GW}} \) and \(\text{Fe}_{\text{Sed,W}} \) are negatively correlated, suggesting that dissolved \(\text{As}_{\text{GW}} \) may be sequestered by sorption/re-absorption onto solid phase Fe minerals; (ii) \(\text{As}_{\text{Sed,W}} \) is positively correlated with both \(\text{Fe}_{\text{Sed,W}} \) and sedimentary TOC, which is suggestive of the importance of sorption of \(\text{As(III)} \) to Fe-bearing mineral phases and/or TOC; and (iii) \(\text{As}_{\text{Sed,W}} \) is negatively correlated with MGS which is expected given the greater specific surface areas of fine-grained sediments. In contrast, in T-Clay, the following observations hold: (i) no significant correlation between \(\text{As}_{\text{GW}} \) and \(\text{Fe}_{\text{Sed,W}} \), nor between \(\text{As}_{\text{Sed,W}} \) and \(\text{Fe}_{\text{Sed,W}} \) (suggests different dominant processes than T-Sand); (ii) no relationship between \(\text{As}_{\text{Sed,W}} \) and MGS, however a strong negative correlation between \(\text{Eh} \) and MGS show that the redox conditions may not be sufficiently reducing to support As mobilization in the finest grained sediments; and (iii) the wide range of observed \(\text{As}_{\text{Sed,W}} \) at very low TOC may suggest a degree of binding/occlusion of As-bearing Fe-bearing minerals to the sedimentary OM. These differences are further reflected in the MLR modelling, which shows that \(\text{As}_{\text{GW}} \) in T-Sand is correlated with explanatory variables pH, \(\text{Fe}_{\text{Sed,W}} \), \(\text{As}_{\text{Sed,S}} \) and TOC; whereas \(\text{As}_{\text{GW}} \) in T-Clay depends on pH, \(\text{Fe}_{\text{Sed,W}} \), \(\text{As}_{\text{Sed,W}} \) and \(\text{As}_{\text{Sed,S}} \). The important implication here is that sampled groundwater chemistry may not be representative of, and indeed may “mask”, the key biogeochemical processes ultimately controlling initial As mobilization in such aquifers.
Acknowledgements

This research was funded by a NERC Standard Research Grant (NE/J023833/1) to DAP, BEvD and C.J. Ballentine (now at University of Oxford) and a NERC PhD studentship (NE/L501591/1) to DM. MJCM acknowledges receipt of a University of Cádiz(UCA) Postdoctoral Bridge Contract award, and LAR acknowledges the support of The Leverhulme Trust (ECF2015-657). Louise Norman (formerly University of Manchester, UoM) is thanked for contributions to sediment extractions and Safia Bibi (formerly UoM) and Debbie Ashworth (UoM) are thanked for preparation of samples for TOC analysis. Paul Lythgoe and Karen Theis (both UoM) are thanked for analytical and laboratory support. The following people are thanked for their contributions to the field campaigns during which these samples for this study were collected: Chivuth Kong, Pheary Meas, Teyden Sok and Yut Yann (Royal University of Agriculture, Cambodia); Chhengngunn Aing and Zongta Sang (Royal University of Phnom Penh, Cambodia), local landowners and the local drilling team led by Hok Meas. Resources Development International – Cambodia is thanked for logistical support during field campaigns.

References

to geomorphology in an arsenic contaminated Holocene aquifer, Cambodia. *Scientific Reports*, 7, DOI:10.1038/s41598-017-13354-8.

Techniques Undertaken Under the Auspices of the BCR of the Commission of the European Communities. *International Journal of Environmental Analytical Chemistry*, 51, 135-151

List of Figures

Figure 1. Site map showing location of transects, T-Sand and T-Clay, and of individual boreholes mentioned in the text. From Magnone et al. (2017) under terms of an open access CC-BY license, details of which may be found at http://creativecommons.org/licenses/by/4.0/

The subscripts Sed,W and Sed,S refer respectively to weakly bound and strong bound sedimentary concentrations of the associated chemical component
<table>
<thead>
<tr>
<th>Sediment fraction</th>
<th>Extractant</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weakly Bound</td>
<td>40 mL of 0.11 M CH$_3$COOH</td>
<td>Shake 16 h at RT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Centrifuge at 2700 rpm</td>
</tr>
<tr>
<td>Strongly Bound</td>
<td>20 mL of 0.5 M NaH$_2$PO$_4$ (adjusted at pH 5 with NaOH)</td>
<td>Shake 24 h at RT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Centrifuge at 2700 rpm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dilution and acidification (1%)</td>
</tr>
</tbody>
</table>

Table 1. Sediment extraction procedures used for trace metal assessment (modified after Ure et al., 1993; Eiche et al., 2008; Keon et al., 2001). Room temperature (RT) in the analytical facilities was approximately 18 – 20 °C.
Table 1. Limit of detection (LoD) and quantification (LoQ) for As, Fe, Mn and P in different matrices. CH$_3$COOH was used as the extractant for weakly bound analytes and NaH$_2$PO$_4$ as the extractant for strongly sorbed analytes; As was analysed with ICP-MS and Fe, Mn and P with ICP-AES.

<table>
<thead>
<tr>
<th>Matrix</th>
<th>CH$_3$COOH (0.11 M)</th>
<th>NaH$_2$PO$_4$ (0.5 M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyte</td>
<td>As(µg/L) Fe (mg/L) Mn (mg/L) P (mg/L) As(µg/L) Fe (mg/L) Mn (mg/L)</td>
<td></td>
</tr>
<tr>
<td>LoD</td>
<td>0.01 0.02 0.01 0.01</td>
<td>0.14 0.04 0.01</td>
</tr>
<tr>
<td>LoQ</td>
<td>0.03 0.08 0.05 0.04</td>
<td>0.48 0.12 0.02</td>
</tr>
<tr>
<td>Site</td>
<td>Depth (m)</td>
<td>pH</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>LR01</td>
<td>6</td>
<td>6.8</td>
</tr>
<tr>
<td>LR02</td>
<td>15</td>
<td>7.0</td>
</tr>
<tr>
<td>LR03</td>
<td>15</td>
<td>7.0</td>
</tr>
<tr>
<td>LR04</td>
<td>15 (12)</td>
<td>7.0</td>
</tr>
<tr>
<td>LR05</td>
<td>6</td>
<td>6.7</td>
</tr>
<tr>
<td>LR07</td>
<td>15</td>
<td>7.0</td>
</tr>
<tr>
<td>LR08</td>
<td>30</td>
<td>6.9</td>
</tr>
<tr>
<td>LR10</td>
<td>6</td>
<td>6.7</td>
</tr>
<tr>
<td>LR12</td>
<td>15</td>
<td>7.0</td>
</tr>
<tr>
<td>LR13</td>
<td>30</td>
<td>6.9</td>
</tr>
<tr>
<td>LR14</td>
<td>6</td>
<td>6.9</td>
</tr>
<tr>
<td>LR16</td>
<td>30</td>
<td>6.9</td>
</tr>
<tr>
<td>LR17</td>
<td>30</td>
<td>6.9</td>
</tr>
<tr>
<td>LR18</td>
<td>6</td>
<td>7.1</td>
</tr>
<tr>
<td>LR19</td>
<td>15</td>
<td>6.9</td>
</tr>
<tr>
<td>LR20</td>
<td>21</td>
<td>6.7</td>
</tr>
<tr>
<td>LR21</td>
<td>30</td>
<td>6.7</td>
</tr>
</tbody>
</table>
Table 1. Groundwater and paired sediment data from T-Sand and T-Clay transects. The subscripts GW, Sed,W and Sed,S refer to groundwater, weakly sorbed and strongly sorbed forms of the associated chemical component. ¹Depth typically refers to the depth of both water and corresponding sediment samples; in the case where a depth is reported as XX (YY) the XX refers to the depth of the water and (YY) is the depth of the sediment samples (differences were due to sediment sampling challenges at some sites). ²Groundwater characteristics are reported as the median value of pre- and post-monsoon sampling campaigns (full data for individual campaigns including errors are reported in Richards et al., 2017a; note samples LR01-6, LR16-15 and LR16-30 were only sampled post-monsoon). ³Mean grain size (MGS, Folk and Ward method; Richards et al., 2017a); n/a indicates data not available and n/d not detected. ⁴Total organic carbon (TOC) was previously reported (Magnone et al., 2017). A site schematic and map are provided elsewhere (Richards et al., 2017a). No strongly bound P is reported due to the nature of the extractant.
Table 1. Summary of MLR for arsenic in groundwater conducted on the (A) overall dataset and split by transect (B) T-Sand and (C) T-Clay. The table shows both an unrefined model with all variables and a refined model with only variables for which H$_0$ has been rejected at the 95 % confidence level. The F-statistic is reported as F (regression df, residual df) = value, where df = degrees of freedom. Note the unrefined models use all of the same explanatory variables although the refined models may use different explanatory variables depending on statistical significance.
Table 1. Summary of MLR for arsenic in groundwater conducted on the dataset split by Eh: (A) “Low Eh” < -75 mV and (B) “High Eh” > -75 mV. The table shows both an unrefined model with all variables and a refined model with only variables for which H0 has been rejected at the 95% confidence level. The F-statistic is reported as F (regression df, residual df) = value, where df = degrees of freedom. No refined model was statistically significant with these explanatory variables for the High Eh group.
RESEARCH HIGHLIGHTS

Contrasting Sorption Behaviours Affecting Groundwater Arsenic
Concentration in Kandal Province, Cambodia

Richards et al.

Submitted to “Geoscience Frontiers”

2017

Research Highlights

• Selective chemical extractions of As, Fe, Mn & P in arsenic-prone aquifers in Cambodia
• Contrasting sorption behaviour observed in clay- and sand-dominated sediments
• Groundwater-sediment partial re-equilibration masks microbial controls on As mobility