is an advanced e-publisher struggling to bring further worldwide learning, knowledge and research. This transformative mission is realized through our commitment to innovation and enterprise, placing us at the cutting-edge of electronic delivery in a world that increasingly considers the dominance of digital content and networked access not only to books and journals but to a whole range of other pedagogic services.

In both books and journals, ASERS Publishing is a hallmark of the finest scholarly publishing and cutting-edge research, maintained by our commitment to rigorous peer-review process.

Using pioneer developing technologies, ASERS Publishing keeps pace with the rapid changes in the e-publishing market.

ASERS Publishing is committed to providing customers with the information they want, when they want and how they want it. To serve this purpose, ASERS publishing offers digital Higher Education materials from its journals, courses and scientific books, in a proven way in order to engage the academic society from the entire world.
Contents:

1. Tourism Demand and Exogenous Exchange Rate in Cambodia: A Stochastic Seasonal ARIMAX Approach 5
 Theara CHHORN

2. Wage Inequality and Innovative Intelligence-Biased Technological Change ... 17
 Taiji HARASHIMA

 Ibrahim A. ONOUR

4. Assessing the Impact of Integration on Economic Growth and Food Security in ECOWAS .. 32
 Almame Abdoulguion TINTA, Daniel Bruce SARPONG, Idrissa Mohamed OUEDRAOGO, Ramatu AI HASSAN, Akwasi Mensah-BONSU, Edward Ebo ONUMAH

5. Aggregation with a Non-Convex Labour Supply Decision, Unobservable Effort, and Reciprocity (“Gift Exchange”) in Labor Relations .. 45
 Aleksandar VASILEV

6. The Credit Channel Transmission of Monetary Policy in Tunisia .. 49
 Ali MNA, Moheddieine YOUNSI

7. Forecasting Inflation in Sierra Leone Using ARIMA and ARIMAX: A Comparative Evaluation. Model Building and Analysis Team .. 63
 Edmund TAMUKE, Emerson Abraham JACKSON, Abdulai SILLAH

 George ABUSELIDZE

9. Creative Economy Development Based on Triple Helix in Indonesia ... 82
 Rudy BADRUDIN, Baldric SIREGAR

10. Investment Attraction, Competition and Growth; Theoretical Perspective in the Context of Africa .. 92
 Emmanuel Tweneboah SENZU

11. Evolution of International Trade in Romania between 2016-2018 with Forecasts for 2019-2021 ... 103
 Octavian Dan RĂDESCU

12. The Link Between Migration, Remittances and Economic Growth: Empirical Evidence from Romania .. 109
 Ramona PIRVU, Roxana BADARCEA, Alina MANTA, Nicoleta FLOREA
Many economists today are concerned by the proliferation of journals and the concomitant labyrinth of research to be conquered in order to reach the specific information they require. To combat this tendency, Theoretical and Practical Research in Economic Fields has been conceived and designed outside the realm of the traditional economics journal. It consists of concise communications that provide a means of rapid and efficient dissemination of new results, models and methods in all fields of economic research.

Theoretical and Practical Research in Economic Fields publishes original articles in all branches of economics – theoretical and empirical, abstract and applied, providing wide-ranging coverage across the subject area.

Journal promotes research that aim at the unification of the theoretical-quantitative and the empirical-quantitative approach to economic problems and that are penetrated by constructive and rigorous thinking. It explores a unique range of topics from the frontier of theoretical developments in many new and important areas, to research on current and applied economic problems, to methodologically innovative, theoretical and applied studies in economics. The interaction between empirical work and economic policy is an important feature of the journal.

Theoretical and Practical Research in Economic Fields, starting with its first issue, it is indexed in EconLit, RePEc, EBSCO, ProQuest, Cabell Directories and CEEOL databases.

The primary aim of the Journal has been and remains the provision of a forum for the dissemination of a variety of international issues, empirical research and other matters of interest to researchers and practitioners in a diversity of subject areas linked to the broad theme of economic sciences.

All the papers will be first considered by the Editors for general relevance, originality and significance. If accepted for review, papers will then be subject to double blind peer review.

Invited manuscripts will be due till May 10th, 2018, and shall go through the usual, albeit somewhat expedited, refereeing process.

Deadline for submission of proposals: 10th November 2018

Expected publication date: December 2018

Website: http://journals.aserspublishing.eu/tpref

E-mail: tpref@aserspublishing.eu, asers.tpref@gmail.com

To prepare your paper for submission, please see full author guidelines in the following file: TPREF_Full_Paper_Template.docx, on our site.
AGGREGATION WITH A NON-CONVEX LABOUR SUPPLY DECISION, UNOBSERVABLE EFFORT, AND RECIPROCITY (“GIFT EXCHANGE”) IN LABOR RELATIONS

Aleksandar VASILEV
Independent Researcher, Bulgaria,
alvasilev@yahoo.com

Abstract:
The purpose of this note is to explore the problem of non-convex labour supply decision in an economy with reciprocity in labour relations (“gift exchange”) a la Danthine and Kurmann (2010), and explicitly perform the aggregation presented in Vasilev (2017) without a formal proof, and thus provide - starting from micro-foundations - the derivation of the expected utility functions used for the aggregate household. We show how lotteries as in Rogerson (1988) can be used to convexify consumption sets, and aggregate over individual preferences. With a discrete labour supply decisions, the elasticity of aggregate labour supply increases from unity to infinity.

Keywords: aggregation; indivisible labour; non-convexities; reciprocity.

JEL Classification: E10; J22; J41; J46.

Introduction

The purpose of this note is to explore the problem of non-convex labor supply decision in an economy with reciprocity in labour relations (“gift exchange”) a la Danthine and Kurmann (2010), and explicitly perform the aggregation presented in Vasilev (2017) without a formal proof, and thus provide - starting from micro-foundations - the derivation of the expected utility functions used for the aggregate household. We show how lotteries as in Rogerson (1988) can be used to convexify consumption sets, and aggregate over individual preferences. With a discrete labour supply decisions, the elasticity of aggregate labour supply increases from unity to infinity.

1. Model Setup

The theoretical setup follows to a great extent Vasilev (2017). To simplify the analysis, the model economy here is static, without physical capital, and agents will face a non-convex labour supply decision. Effort exerted by workers is a productive input in the final-goods sector, but unobservable, and thus not directly contractible. However, producers understand that while workers do not like exerting effort, they derive utility from returning the gift of a generous wage by supplying a higher effort level even in an environment of costly monitoring. This leads to the firm paying an efficiency wage. Since the focus is on a one-period world, the model abstracts away from technological progress, population growth and uncertainty. There is a large number of identical one-member households, indexed by \(i\) and distributed uniformly on the unit interval. In the exposition below, we will use small case letters to denote individual variables and suppress the index \(i\) to save on notation.

1.1 Households

Each household maximizes the following utility function:

\[
U(c,e,n) = \ln c + \ln(1-h) - h \left[0.5 e^2 - R(e) \right]
\] (1)
where \(c \) denotes consumption of each household \(i \), \(h \) is the level of effort exerted. The total time endowment available to each household \(i \) is normalized to unity, thus leisure, \(l = 1 - h \), is implicitly expressed as time off work. The novelty here is the utility term, which is included to capture that workers may derive utility out of “reciprocal behavior towards their employer.” As long as \(R(e,.) > 0 \), household \(i \) would be willing to reward a wage that is perceived to be above the competitive one (even in the absence of any direct material gain resulting from such an action) with a level of effort above the required minimum (say, zero).

As in Hansen (1985) and Rogerson (1988) household’s labour supply is assumed to be indivisible, i.e. \(h \in (0,\tilde{h}) \). The problem faced by a household that decides to work full-time is then to set \(h = \tilde{h} \) and enjoy

\[
U^w = \ln c^w + \ln(1 - \tilde{h}) - \frac{\tilde{h}}{0.5}(e^w)^2 - R(e^w,.)
\]

where \(c^w = w\tilde{h} + \pi \) and \(e^w \) are the consumption and effort levels when working. Note that the effort level will be determined implicitly from its optimality condition \(e = R(e,.) \), which does not depend on the other model variables. In contrast, a household that decides not to work chooses \(h = 0 \) and enjoy

\[
U^u = \ln c^u,
\]

where \(c^u = \pi \) is the consumption level when the household is not working.

1.2. Reciprocity

As in Vasilev (2017), the reciprocity term, \(R(e,.) \), in the household’s utility function is modeled as a product of the mutual “gifts” of an employed household and the representative firm:

\[
R(e,.) = d(e)g(w)
\]

where \(d(e) \) denote the gift of the employed household towards the firm, expressed in terms of effort exerted, and \(g(w) \) is the counter-gift of the firm to the worker in terms of the wage rate paid. Both terms are assumed to be concave in their respective arguments, i.e. \(d_w(e) > 0 \), \(d_{ee}(e) < 0 \), and \(g_w(w) > 0 \), \(g_{ww}(w) < 0 \). Hence, when a worker receives a wage offer that is perceived as generous (e.g. a wage above the competitive rate), \(g(w) > 0 \), the household’s utility increases if there is a reciprocal gift expressed in terms of higher effort, \(d(e) > 0 \). In addition, from the perspective of an atomistic worker, the wage rate is taken as given, that is why \(d_w(e) = 0 \). In addition, employed households do not take into consideration the effect of their (individual) effort on the firm’s output, and hence on the gift made by the firm to the worker, i.e., \(g_w(w) = 0 \) from the perspective of an employed household. Note that in defining the two gifts, both are expressed as deviations from some expected norm (“reference level”). To simplify the analysis, we will normalize the minimum acceptable effort level to be \(e_{\min} = 0 \). The worker’s gift then can be expressed as:

\[
d(e) = f(e)
\]

where the functional form was intentionally chosen the same as the firm’s production function. Next, we define the firm’s gift as follows:

\[
g(w) = \ln w - \varphi \ln f(eH) - \varphi \ln n,
\]

where the first term on the right-hand-side, \(\ln w \), is the utility benefit resulting from a higher consumption, which the worker attributes to the firm’s wage offered. The remaining term has to do with rent-sharing considerations between the firm and the worker, as it represents the surplus to be shared (worker’s product). In this case it represents a case where the firm distributes all the revenue to its workers. Plugging this expression into the optimal effort condition

\[
e = R_e(e,.) = d_e(e)g(w) = f'(e)g(w),
\]
Theoretical and Practical Research in Economic Fields

which does not have a closed-form solution. However, if we use \(f(e) = e^\alpha \), \(0 < \alpha < 1 \), then we can express the wage rate as

\[
\ln w = \frac{e^{2-\alpha}}{\alpha} + \varphi \ln \left(\frac{(eH)^\alpha}{n}\right).
\]

From this equation it follows that the wage rate set by the firm positively depends on the firm’s revenue per worker \((\varphi > 0) \), as it increases the total surplus/rent of the labor relationship; this is also referred to as a rent-sharing motive.

1.3. Stand-in Firm

There is a representative firm in the model economy. It produces a homogeneous final product using a production function that requires labor \(H \) as the only input. For simplicity, output price will be normalized to unity. The production function \(f(H) \) features decreasing returns to scale (for any effort level): \(f'(eH) > 0 \), \(f''(eH) < 0 \), \(f'(0) = \infty \), \(f(enH) = 0 \). The representative firm acts competitively by setting the wage rate \(w \) and choosing \(H \) to maximize profit by stimulating optimal effort:

\[
\pi = f(eH) - wH \text{ s.t } 0 \leq H \leq \bar{h}
\]

and

\[
e = f'(e) g(w)
\]

In equilibrium, there will be positive profit, which follows from the assumptions imposed on the production function.

1.4. Decentralized Competitive Equilibrium (DCE): Definition

A DCE is defined by allocations \(\{c^n; c^e; e; H\} \), wage rate \(\{w\} \), and aggregate profit \(\pi = \Pi \) s.t.

(1) all households maximize utility;
(2) the stand-in firm maximizes profit;
(3) all markets clear.

2. Characterization of the DCE and derivation of the aggregate utility function

It will be shown that in the DCE, if it exists, only some of the households will be employed and work full-time, while the rest will be unemployed. Following the arguments in Rogerson (1988) and Hansen (1985), it can be easily shown that polar cases in which each household either, or a case in which nobody works, cannot not be equilibrium outcomes. Therefore, it must be the case that an only proportion of the agents in the economy are working. Denote this mass of employed by \(n \). Workers will receive consumption \(c^w \), while those not selected for work will consume \(c^e \). Note that \(n \) can be interpreted also as the probability of being chosen to work: This probability is determined endogenously in the model, as workers would seek for the optimal balance between the net return from working in terms of increased utility of consumption, which, however, comes at the expense of lower utility out of leisure. Note that no matter of the employment outcome, ex post every household enjoys the same utility level.

Thus, in equilibrium

\[
H = n\bar{h}.
\]

As derived earlier, the wage is set equal to:

\[
\ln w = \frac{e^{2-\alpha}}{\alpha} + \varphi \ln \left(\frac{(eH)^\alpha}{n}\right).
\]

Firm’s profit is then

\[
\pi = \Pi = f(n(eH)) - wn\bar{h},
\]

which follows from the decreasing returns to scale featured by the production function. Next, to show that the DCE actually exists, it is sufficient to show the existence of a fixed-point \(n \) in the unit interval by analyzing a non-linear equation using the fact that in equilibrium utility is the same for all households. It is trivial to show that everyone working in the market sector \((n = 1) \) is not an equilibrium, since then \(w = 0 \). From the ex-ante symmetry assumption for households, market consumption would be the same for workers and those not selected for work, while the latter would enjoy higher utility out of leisure, hence there is no benefit of working. Similarly, nobody working \((n =
Theoretical and Practical Research in Economic Fields

0) is not an equilibrium outcome either, since the firm would then offer a very high wage for the first unit of labour, and by taking a full-time job a marginal worker could increase his/her utility a lot.

Thus, if there is a DCE, then it must be that not all households would receive the same consumption bundle. If \(n \) in the unit interval is an equilibrium employment rate, then total utility for households that work should equal to the utility of households that do not supply any hours. This equation is monotone in \(n \), as the utility function is a sum of monotone functions. Thus, we can explore the behaviour of that function (the difference between the utility of working and not working) as we let \(n \) vary in the \((0, 1)\) interval. As \(n \) approaches 0, the left-hand-side dominates (utility of working is higher), while when \(n \) approaches unity, the right-hand-side dominates (utility of not working is higher), where the results follow from the concavity of the utility functions and the production technology. In addition, from the continuity of those functions, there is an \(n \) in the unit interval, which is consistent with equilibrium. The unique value of equilibrium \(n \) follows from the monotonicity of the utility and production functions. Let \(c^w \) and \(c^u \) denote equilibrium consumption allocations of individuals selected for work, and those who will work in the informal sector.

Given the indivisibility of the labour supply, the equilibrium allocation obtained above is not Pareto optimal, as demonstrated in Rogerson (1988). More specifically, a social planner (SP) could make everyone better off by using an employment lottery in the first stage and choosing the fraction \(n \) of individual households to work in the market sector and give everyone consumption \(nc^w + (1-n)c^u \). In order to show this, we need to check that such an allocation is feasible, and that it provides a higher level of total utility. Showing feasibility is trivial as total market labour input and total consumption are identical to the corresponding individual equilibrium values.

Next, we will show that the new allocation, which is independent of household’s employment status in the market sector, makes households better off since it generates higher utility on average. This is indeed the case, where the strict inequality follows from the convexity of the CES aggregation and the concavity of the logarithmic function. Thus, the SP is indeed giving in expected utility terms an allocation that is an improvement over the initial equilibrium allocation. If households can pool income together and doing so, they will be able to equalize consumption across states, i.e., \(c = c^w = c^u \), so aggregate utility becomes:

\[
U(c,e,n)=\ln c + n \left[\ln(1-\frac{e}{h}) - 0.5 e^2 + R(e,.) \right],
\]

which is the representation in Vasilev (2017). On the aggregate, when each household faces an indivisible labour choices, the representative agent obtained from the aggregation features different preferences of work: as in Hansen (1985), the disutility of work in the market sector is now linear.

Conclusion

The purpose of this note is to explore the problem of non-convex labour supply decision in an economy with reciprocity in labour relations (“gift exchange”) a la Danthine and Kurmann (2010), and explicitly perform the aggregation presented in Vasilev (2017) without a formal proof, and thus provide - starting from micro-foundations - the derivation of the expected utility functions used for the aggregate household. We show how lotteries as in Rogerson (1988) can be used to convexify consumption sets, and aggregate over individual preferences. With a discrete labour supply decisions, the elasticity of aggregate labour supply increases from unity to infinity.

References

