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An Incremental Approach to Learning Generalizable Robot Tasks from
Human Demonstration

Amir M. Ghalamzan E., Chris Paxton, Gregory D. Hager, Luca Bascetta

Abstract— Dynamic Movement Primitives (DMPs) are a
common method for learning a control policy for a task
from demonstration. This control policy consists of differential
equations that can create a smooth trajectory to a new goal
point. However, DMPs only have a limited ability to generalize
the demonstration to new environments and solve problems
such as obstacle avoidance. Moreover, standard DMP learning
does not cope with the noise inherent to human demonstra-
tions. Here, we propose an approach for robot learning from
demonstration that can generalize noisy task demonstrations
to a new goal point and to an environment with obstacles.
This strategy for robot learning from demonstration results in
a control policy that incorporates different types of learning
from demonstration, which correspond to different types of
observational learning as outlined in developmental psychology.

I. INTRODUCTION

Dynamic Movement Primitives (DMPs) have been pro-
posed as a method for teaching a robot a skill from a task
demonstration and reproducing the task with different start
and end points [1]. While they have been successfully used
to capture motion primitives, DMPs have a very limited
ability to adapt to new environments. Further, ordinary DMPs
will reproduce any noise present in a suboptimal human
demonstration.

For example, assume that a person is teaching a house-
hold service robot how to sweep rubbish into a dustpan
by moving its arm to provide a demonstration. This is a
challenging problem that has been explored in prior work [2].
To perform the task, the robot should follow a noise-free
average trajectory/path computed from the suboptimal human
demonstrations, for example one learned via Gaussian Mix-
ture Model/Gaussian Mixture Regression (GMM/GMR) [3].
Alternatively, we might acquire a DMP from the noisy
demonstrated trajectory and use it to generate an appropriate
path to different goal points: positions of the dustpan (Fig. 7).
However, the generated path would not be applicable if a
mouse or a coffee cup were in the robot’s way. The robot
should ideally be capable of adapting the learned skill to
the new situation based on the provided demonstrations. In
Figure 1, we show a version of this task where a human is
sweeping a green block while avoiding a marker and a coffee
cup. The human does not want to knock the marker over, so
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Fig. 1. Teaching a robot to perform a sweeping task. (a) shows a marker
being used as an obstacle o during demonstration of sweeping a green cube
T into a dustpan G; (b) shows a cup as an obstacle.

the robot should learn a different object avoidance policy for
each object.

A number of other methods have been developed to
expand DMPs to cope with new environments in the presence
of obstacles. In [4], variability of different demonstrations
was used to estimate the stiffness matrices in a modified
version of the DMP model. Then, a risk indicator modulating
repulsive force was defined to enable a robot to safely
avoid collision with a human. Guenter et al. [5] developed
a model of a task using a dynamical system modulated by
a Gaussian mixture model. The model was combined with
reinforcement learning to enable the robot to learn a new
way of accomplishing a task in a constrained environment.

In another work, Kormushev et al. [6] initialized a modi-
fied model of DMPs with imitation learning and used rein-
forcement learning to compute the optimal parameter values
of the model for a new environment. Park et al. [7] added
the gradient of a dynamic potential field to the acceleration
term of the differential equation of the DMPs. The potential
field depended on the relative distance and velocity between a
robot’s end effector and an obstacle. Hoffmann et al. [8] also
added an acceleration term to the equations of motion in the
DMP formulation to avoid colliding with a moving obstacle,
relating the position of the end effector to the position of the
obstacle.

In these works, parameters for obstacle avoidance were
explicitly included in the problem. Therefore, the robot does
not learn the desired responses to different objects, and a
non-expert person cannot modify the behavior of the robot
in response to the environment based on task requirements.
Additionally, while methods using GMM/GMR [3] have
been developed to compute an average trajectory from a set
of suboptimal task demonstrations, sub-optimality will be



preserved in a DMP capturing that task through a suboptimal
demonstration.

In this work, we propose a three-tiered approach for robot
Learning from Demonstration (robot LfD). This approach
deals with noisy demonstrations, generalizes the demon-
strated task to different goal points, and learns how to
encode the desired user response to different features of
the environment, e.g. distance from an obstacle. With the
proposed method, the user can teach the robot a desired
behavior in the response to different classes of objects, e.g.
to keep far from a mouse and not very far from a coffee cup.

In Section II, we describe our robot LfD approach inspired
by observational learning. Section III and IV, contain the
problem formulation and algorithm. Then, in Section V,
we present two experiments to illustrate how the proposed
method can be used to teach a robot to perform a pick-and-
place task as well as how to sweep rubbish into a dustpan.

II. INCREMENTAL LEARNING FROM DEMONSTRATION

In this paper, we propose an alternative solution to the
robot learning from demonstration problem inspired by hu-
man skill learning. According to studies of observational
learning [9], [10], humans learn to perform tasks from
demonstration at three different levels: mimicking, imitation
and emulation. Mimicking is the copying of a model’s
bodily movements [10]. Thompson et al. [9] mentioned that
mimicking must involve no conceptualization by the observer
concerning the purpose of the action. Hence, it may not be
possible to accomplish the task in a new environment through
mimicking alone. Whiten et al. [11] defined imitation learn-
ing as a goal oriented copying the form of an observed action.
In imitation learning, an observer is assumed to recognize
what the form of the model’s movements is bringing about
and use that to carry out the task; it is therefore analogous
to a traditional DMP. Lastly, in emulation learning, the
observer replicates the expected results of the model’s action
[10]. We propose an incremental approach for robot learning
from demonstration based on these three types of learning,
outlined in Figure 2.

First, when mimicking a skill, we compute a noise-
free average path from a set of suboptimal demonstrations,
modeled as a Gaussian Mixture Model [3]. We refer to this
model as the estimated nominal path ζ N . The robot can
replicate the task using the estimated nominal path if the
environment is fixed and lacks any obstacles. However, this
method alone cannot generalize to different environments.

Second, at the imitation learning level, the robot must be
able to generalize a demonstration to a new start and goal
point. We use DMPs to scale the nominal path ζ N from
a new start point xstart to a new goal point xgoal [1]. This
results in an estimate of the underlying noise- and obstacle-
free trajectory from any given xstart to xgoal , denoted by
ζ N(xstart ,xgoal).

Finally, at the emulation learning level, based on the
computed average path we use an Inverse Optimal Control
(IOC) approach to compute a reward function whose optimal
solution is as close as possible to the demonstrations. The

Noisy task demonstrations

Mimicking: reproduce noise-free path (GMM/GMR)

Emulation: generalize path to new environments

Imitation: generalize path to new goal point (DMP)

Execution: reproduce skill in new environments

Fig. 2. Overview of the proposed method inspired by human skill
learning. In the mimicking step, we compute the average path from a set of
demonstrations. We create a model that can be scaled to different start and
goal positions (imitation) and learn a parameterized cost function modeling
the appropriate response to different objects in the environment (emulation).

IOC problem recovers a reward function R from a set of
demonstrations, where the reward function is the sum of
an imitation reward function RI describing the tendency
to follow the nominal path ζ N and an emulation reward
RE describing the expected response to the environment.
This strategy incorporates the noise-free skill obtained from
human demonstrations with the desired user response to
different environmental features in a single reward function,
which can be used to generalize the task to new goal points
and new environments with different obstacles.

III. REWARD FUNCTION FORMULATION

In order to integrate the different types of learning into
a single model of a demonstrated task, we formalize the
learning from demonstration problem posed above as an
optimal control problem.

A. Optimal Control Formulation

We assume a set of demonstrated trajectories D such
that each demonstration ζd ⊂ D , ∀d = 1, ...,Ndemo, is an
optimal solution to an unknown reward function in the
corresponding environment Ed corrupted by noise, Ed =
{O1, ...,ONobs}, ∀d = 1, ...,Ndemo, where Ndemo is the number
of demonstrations and Nobs is the number of obstacles O in
dth environment. We further assume that there exist Nclass
different object classes, C = {C1, . . . ,CNclass}. Each class
represents a set of objects with specific size and shape.

The optimal control problem is defined by a state space
S ∈Rn, an action space A ∈Rm, a state transition function
T (s ∈S ,a ∈A ) : Rn+m→Rn, and a reward function R(s ∈
S ) : Rn→ R. We assume the reward function is a function
of the state of the actor x ∈ Rp and of the features of the
environment f ∈Rq, so that R(s = {x, f}) and n = p+q. Our
goal is to learn a reward function that allows us to compute
the optimal action a ⊂ A at each state s ⊂ S for a new
unobserved environment based on this reward function.

Assume a robot can optimally perform a task by following
a nominal path ζ N in an environment without any obstacle.
The demonstrated paths ζd may not be identical to the
nominal path because of the presence of obstacles in the
corresponding environment and/or the noise. We estimate



the nominal path as a Gaussian Mixture Model, and assume
that the recovered reward function must be a function of the
nominal model of the task and the corresponding features
of environment. Features of the environment depend on x
given a scene. However, for the sake of simplicity, we write
f instead of f(x).

We consider the problem of performing a task to be an
episodic, deterministic, optimal control problem with fixed
time horizon Te in discrete time, in a continuous state-space
and action-space and with a known world model. As per [12],
our goal is to learn the underlying reward function R(s)
from the demonstrations D . We decompose the underlying
reward function R(x, f) into two components: an imitation
component RI(x), whose optimal solution will be identical
to the nominal path, and an emulation component RE(f),
that encodes the response of the robot to the environmental
features.

Given a reward function R = RI +RE , we maximize the
expected return ρπ =∑

Te−1
i=1 R(si+1), to find an optimal policy

π∗ defined as:

π
∗ = argmax

π

Te−1

∑
i=1

(RI (xi+1)+RE (fi+1))

subj. to si+1 = T (si,ai),

ai ∈A ,

(1)

where π = {a1, ...,aTe−1} is the sequence of actions that a
robot takes to accomplish the task and A is a polyhedral
region that is a feasible subset of the set of all actions. By
executing the optimal policy π∗, the robot follows a sequence
of states ζ̄ = {s1, s̄2, ..., s̄H}, where s1 is a given initial
condition. We will now discuss the imitation component RI
and emulation component RE of the reward function.

Imitation component of the reward function: We represent
the model producing a generalized nominal path to a new
goal point as a DMP. This DMP is produced by the imitation
learning step described above: it generalizes the estimated
nominal path ζ N to a new start and goal point. The estimated
nominal path is first learned as a Gaussian Mixture Model
as described in [3], with K = 4 components initialized by k-
means clustering. This model allows us to combine multiple
demonstrations across slightly different environments with
the same start and goal positions. The GMM removes noise
from the human demonstrations; as such, we assume it is
the noise-free optimal solution to performing a task with no
obstacles in the environment.

We generate a trajectory from this GMM using Gaussian
Mixture Regression (GMR). As per [3], we input a set of
times and use GMR to recover the expected robot state x at
each. This trajectory is used to learn the DMP model used to
generalize to new start and goal positions. Note that it would
be possible to replace this with the task-parameterized GMM
approach described in [13] with very little modification; we
use the two step approach to illustrate the parallels with
human skill acquisition.

We can then model the imitation reward function in terms
of deviation from the nominal path ζ N generalized by the

DMP:

RI (xi : Q) =−
(
xi−xN

i
)T Q

(
xi−xN

i
)

xN
i ⊂ ζ

N , i = 1, ...,Te (2)

where xN
i ∈Rn is a point on the nominal path ζ N . We search

along a line normal to ζ N to find the optimal solution at each
time step i, i = 1, ...,Te, where the point of the nominal path
corresponding to the time step i is xN

i . The line segment
between the point xN

i on the nominal path at time i and
the next state xi for the current environment, xN

i xi, must be
perpendicular to ζ N . This allows us to restrict our search
space and solve the problem in discrete time, because the
state space normal to ζ N at time i is continuous. For further
details, see [14].

Emulation component of the reward function: The optimal
solution for the emulation component problem is not invari-
ant over different distributions of obstacles. Since deviation
from the nominal model is local, a Gaussian function with
covariance matrix R can be learned from features of the
demonstration data. This gives us the emulation component
of the reward function RE :

RE (fi : R) =
Nobs

∑
j=1
−e(−fT

i, j R−1 fi, j) (3)

where fi, j ∈ Rq is a vector of the environmental features
at xi related to the jth obstacle, captured during the dth

demonstration. While in theory any set of environmental
features could be used, we describe response to different
types of obstacles as a function of distance to those obstacles.
We express f in terms of the given obstacles positions O in
the dth environment Ed . This lets us rewrite eq. (3) as:

RE (xi,Ed : R) =
Nobs

∑
j=1
−e(−(xi−O j)

T R−1 (xi−O j)) (4)

Accordingly, the general reward function, R(x,Ed : θ) char-
acterizing the demonstrated behavior in a different environ-
ment with added obstacles is a combination of the emulation
component given by eq. (3) and the imitation component
given by eq. (2) as follows:

R(s,Ed : θ) =−
(
xi−xN

i
)T Q

(
xi−xN

i
)
−

Nobs

∑
j=1

e−fT
i, j R−1 fi, j

(5)
where θ = {Q,R(O1), ...,R(ONobs)}, Q and R(Ol) be-
ing positive definite matrices. For the sake of simplicity
we consider Q and R to be diagonal. In the following,
we compute a set of parameters, θ = {Q,R} and R =
{R(C1), ...,R(CNclass)} where R(CNclass) represents the em-
ulation parameters corresponding to the object class Cnclass ⊂
C ∀ nclass = 1, ...,Nclass.

B. Inverse Optimal Control

Inverse optimal control aims at finding a reward func-
tion whose optimal solution is as close as possible to the
demonstrations. Given an estimated reward function one can
use existing methods, such as dynamic programming or



reinforcement learning, to find a solution ζ̄R(θ ,Ed) to eq. (1).
In our case, to learn the parameters of the reward function
we minimize the cumulative distances between the optimal
solution ζ̄R(θ ,Ed) and the demonstrations as follows:

θ = argmin
θ

D

∑
d=1

Te

∑
i

∥∥ζ̄R(θ ,Ed)(i)−ζd(i)
∥∥2

(6)

where ζd(i) and ζ̄R(θ ,Ed)(i) are the corresponding points on
the demonstration and the solution to the estimated reward
function. The parameters θ of the reward are iteratively
computed by minimizing eq. (6) with minConf, using a quasi-
Newton strategy and limited-memory BFGS updates [15].

IV. SOLUTION TO THE LEARNED REWARD FUNCTION

We maximize the expected return of eq. (1) in order to
compute the optimal solution to the learned reward function
for a new environment. In a finite-horizon problem, optimal
control aims at finding the optimal policy by determining
a sequence of actions ā maximizing the expected return. In
this paper, model predictive control is used to find an optimal
solution to the learned reward function with continuous state
and action spaces.

Consider a prediction time horizon Tp, the optimal action
corresponding to the proposed problem in eq. (1) at ith time
step can be formulated as follows:

āi = argmax
ai

Tp+i

∑
t=i

R(st)

subj. to zt+1 = Azt +Bat

xt = Czt

at ∈A

xt ∈X

i = 1,2, ...,Te−1,

(7)

where X and A are the polyhedral feasible sets of actor
states and actions respectively, and π∗ = {ā1, ..., āTe−1} is
a sequence of optimal actions where its corresponding se-
quence of optimal states is ζ̄R(θ ,Ed) = {x1, x̄2, ..., x̄Te} with
initial value x1.

In eq. (7) a linear dynamical system is considered as the
transition function of the actor in eq. (1). We select A, B
and C such that they represent a stable linear dynamical
system in the receding horizon formulation in eq. (7); i.e.
the magnitudes of the eigenvalues of A are all less than one.
It is assumed that the actor moves with constant velocity
along the nominal path. To find a solution to eq. (6) and (7),
we use minConf with a quasi-Newton strategy and limited-
memory BFGS updates [15]. It is worth mentioning that
the asymptotic stability of the proposed receding horizon
formulation for a path planning problem was discussed by
Xu et al. [16].

V. EXPERIMENTS

We present two experiments: picking and placing an
object during surgical training and sweeping an object
into a dustpan while avoiding various objects. These tasks

PI

PGO

(a)

(b)

Fig. 3. (a) The task model used for data collection with da Vinci surgical
robot with a single obstacle (marker), the nominal path that expert follows
in the absence of obstacles (green line); (b) da Vinci set up to collect expert
demonstrations.

demonstrate the usefulness of the proposed approach for
solving real-world problems based on data from noisy expert
demonstrations. We assume that all the demonstrations have
the same number of sample points and the same duration.

The task of picking and placing an object is a common
task during surgeon training, and many surgical tasks are
constrained by a small available space within a patient’s
body. To obtain a constrained environment we designed
the structure shown in Fig. 3(a). The structure has two
walls constraining the movement of the robotic tool during
picking the object from xstart and placing at xgoal . In the first
experiment a da Vinci robot shown in Fig. 3(b) was used to
collect a set of demonstrations of a simple task: moving an
object from point xstart to point xgoal of this structure.

The operator was asked to maximize the distances from
both walls while performing the task. A marker was fixed to
the scene during execution of the task as an obstacle. This
marker can be thought of as another instrument or a fragile
tissue that needs to be avoided during an operation.

The operator performed the task several times with differ-
ent positions of the marker; these demonstrations constitute
our training data set

ζd = {xd,1, . . . ,xd,Te}, d = 1, . . . ,Ndemo

where Ndemo was the number of demonstrations. Demonstra-
tions can be seen in Fig. 4(a).

At the mimicking level, we use GMM/GMR to compute
the nominal path ζ N = {xN

1 , . . . ,x
N
Te
}, from these demon-

strations. Since the data points close to the obstacle do
not represent the underlying nominal path, for average path
computation by GMM/GMR, we exclude those data points
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Fig. 4. (a) The data set collected with da Vinci robot for different positions
of the marker (green shaded circles), training set (red sold line) and test
set (blue dashed line), the average path computed by GMM/GMR (black
thick line); (b) The contour of the learned reward function for the da Vinci
experiment, and the computed optimal solution to the reward function. Areas
with hotter colors represent positions with higher associated rewards.

Fig. 5. The precision of the reproduced path with respect to use of the
computed average path, ζ N .

to get a better estimation of the underlying nominal path.
At the emulation level, the estimated nominal path ζ N is

used as a reference to build the emulation reward function
RE( f ) that encodes the response of the operator to the
obstacles. In order to evaluate the obtained model of the
task, the collected data set of task demonstrations is divided
into a training set and a test set (Fig. 4(a)).

The parameters of the reward function are computed
using eq. (6) from the training set, Q = diag[200, 200] and
R−1 = diag[475.8, 8576.3]. The learned model of the task
(shown in Fig. 4(b)) is then used to generate the paths,
ζ̄R = {xR

1 , ...,x
R
Te
}, corresponding to the paths within the

test set. In order to validate the method and evaluate the
obtained task model, the mean square error (MSE) of the
generated paths is computed for both test set and training
set, as follows:

MSER =
1

D.Te

D.

∑
d=1

Te

∑
i=1
‖xd,i−xR

i ‖2

where H is the number of sample points of the demonstrated

xstart

xgoal

Fig. 6. The data set of sweeping task with initial point xstart and the goal
point xgoal . There are two demonstrations with marker and two with cup in
the scene whose positions are shown by a black circle.

path and D. is the number of paths within the training set
(Dtr) or test set (Dtst ). The MSE of the obtained optimal
solutions for the test set is equal to e = 0.0911[mm2] with
variance var(e)= 0.0064, illustrating that the obtained model
results in small error values.

The computed MSE represents the error of the generated
path with respect to the demonstrated one. Two main sources
constitute this error, the distance between the computed
average path and the demonstrated one and the adaptation
component. In order to evaluate the obtained adaptation
component of the model, a precision value of each generated
path (Fig. 5) is defined and computed as follows

Pr =
MSEav−MSER

MSEav
×100

where

MSEav =
1

DTe

D

∑
d=1

Te

∑
i=1
‖xd,i−xN

i ‖2

and xN
i is a point of the computed average path by

GMM/GMR. The computed Pr for the training set and the
test set in Fig. 5 shows that the obtained model with the
training set generates the paths corresponding to the ones in
the test set with good precision values.

The second experiment concerns an UR5 robot that learns
a sweeping task in a varying environment from a few demon-
strations, which can then be applied to new environments
with unseen obstable configurations. In the past few years,
due to the development of robots that can safely perform
different tasks out of the cage such as Roomba Vacuum
Cleaning Robot and Erector Spykee, many studies have
been conducted to allow robots to better adapt to unseen
environments [17]. As an example, consider the task of
sweeping a green cube into a dustpan while avoiding various
obstacles, shown in Fig. 1. The task is demonstrated a few
times in the presence of two objects, a marker and a cup,
that we do not want to sweep (Fig. 6). The learning processes
takes place as follows:
• Mimicking: an average path is computed from the set

of task demonstrations;
• Imitation: a nominal path is computed for a new dustpan

position x′goal , different from the demonstrated one xgoal
(Fig. 7(c) and 7(d))



• Emulation: The nominal path is used to build the a
reward function incorporating response to obstacles,
which is used to generate the necessary path correspond-
ing to new positions of the dustpan and the obstacles.

The obtained reward function is a model of the task
that changes according to the position of the objects in the
environment and of the dustpan. The obtained task model
copes with noisy demonstrations, perturbed target positions
and different locations of obstacles. The results, shown in
Fig. 7, illustrate the effectiveness of the approach in capturing
the responses to different object classes and in generalizing
the learned skill to the new goal point.

When reproducing the task, we consider the orientation of
the broom to be normal to the generated trajectory.

VI. CONCLUSION

Inspired by different types of observational learning, we
discussed an incremental strategy for robot LfD employing
learning from demonstration at three different levels. The
proposed approach allows a robot to learn both how to
execute a task with different start and goal positions and
how to adapt the obtained task model to a new environment
with an unseen obstacle configuration. This learning can
be performed based on sub-optimal expert demonstrations,
unlike typical DMP learning.

Although in prior work obstacle avoidance has been ad-
dressed by combining planning methods for obstacle avoid-
ance with DMPs, these works do not allow a non-expert user
to teach a robot the desired response to different objects.
The proposed approach incorporates GMM/GMR, DMPs and
IOC into a reward function used to generate the necessary
path in a new situation. This integrated approach inspired
by studies of observational learning in psychology is what
allows the robot to learn a skill from noisy demonstrations
and to learn the desired user responses to different classes
of objects in the environment.

In this work, we considered only static obstacles. For
future work, we plan to extend the approach to reproduce
tasks in dynamic environments based on learned parameters.

This paper is accompanied by a video of the sweeping
task, showing the ability of the proposed approach to adapt
to unseen environments.

VII. ACKNOWLEDGMENTS

We would like to acknowledge Dr. Simon Leonard for his
assistance collecting data from the Da Vinci.

REFERENCES

[1] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with
nonlinear dynamical systems in humanoid robots,” in Proc. of IEEE
Int. Conf. on Robotics and Automation, vol. 2. IEEE, 2002, pp.
1398–1403.

[2] T. Alizadeh, S. Calinon, and D. Caldwell, “Learning from demonstra-
tions with partially observable task parameters,” in Proc. of IEEE Int.
Conf. on Robotics and Automation, 2014.

[3] S. Calinon, Robot Programming by Demonstration. EPFL Press,
2009.

[4] S. Calinon, I. Sardellitti, and D. G. Caldwell, “Learning-based control
strategy for safe human-robot interaction exploiting task and robot
redundancies,” in IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems. IEEE, 2010, pp. 249–254.

(a) (b)

xstart

x′goal

(c)

xstart

x′goal

(d)

Fig. 7. (a) and (b) snapshots of the scenes used for task reproduction with
different position of the dustpan and obstacles; (c) and (d) the generated
paths corresponding to (a) and (b).

[5] F. Guenter, M. Hersch, S. Calinon, and A. Billard, “Reinforcement
learning for imitating constrained reaching movements,” Advanced
Robotics, vol. 21, no. 13, pp. 1521–1544, 2007.

[6] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill
coordination with em-based reinforcement learning,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems. IEEE, 2010, pp. 3232–3237.

[7] D. Park, H. Hoffmann, P. Pastor, and S. Schaal, “Movement reproduc-
tion and obstacle avoidance with dynamic movement primitives and
potential fields,” in 8th IEEE-RAS Int. Conf. on Humanoid Robots.
IEEE, 2008, pp. 91–98.

[8] H. Hoffmann, P. Pastor, D. Park, and S. Schaal, “Biologically-inspired
dynamical systems for movement generation: automatic real-time goal
adaptation and obstacle avoidance,” in Proc. of IEEE Int. Conf. on
Robotics and Automation. IEEE, 2009, pp. 2587–2592.

[9] D. E. Thompson and J. Russell, “The ghost condition: imitation versus
emulation in young children’s observational learning.” Developmental
Psychology, vol. 40, no. 5, pp. 882 – 899, 2004.

[10] A. Whiten, N. McGuigan, S. Marshall-Pescini, and L. M. Hopper,
“Emulation, imitation, over-imitation and the scope of culture for child
and chimpanzee,” Philosophical Transactions of the Royal Society B:
Biological Sciences, vol. 364, no. 1528, pp. 2417 – 2428, 2009.

[11] A. Whiten and R. Ham, “On the nature and evolution of imitation in
the animal kingdom: reappraisal of a century of research,” Advances
in the Study of Behavior, vol. 21, no. 1, pp. 239–283, 1992.

[12] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proc. of the 21st int. conf. on Machine learning.
ACM, 2004, pp. 1 – 9.

[13] S. Calinon, D. Bruno, and D. G. Caldwell, “A task-parameterized
probabilistic model with minimal intervention control,” in Proc. of
IEEE Int. Conf. on Robotics and Automation. IEEE, 2014, pp. 3339–
3344.

[14] A. M. Ghalamzan E., L. Bascetta, M. Restelli, and P. Rocco, “Esti-
mating a mean-path from a set of 2-d curves,” in Proc. of IEEE Int.
Conf. on Robotics and Automation. IEEE, 2015, pp. –.

[15] M. Schmidt, “Graphical model structure learning with l1-
regularization,” Ph.D. dissertation, University of British Columbia,
2010.

[16] B. Xu, A. Kurdila, and D. Stilwell, “A hybrid receding horizon control
method for path planning in uncertain environments,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems. IEEE, 2009, pp. 4887–4892.

[17] T. Denning, C. Matuszek, K. Koscher, J. Smith, and T. Kohno, “A
spotlight on security and privacy risks with future household robots:
attacks and lessons,” in Proc. of the 11th int. conf. on Ubiquitous
computing. ACM, 2009, pp. 105–114.

View publication statsView publication stats

https://www.researchgate.net/publication/273575520

