Can acute ingestion of Citrulline Malate alter substrate utilisation during a cardiorespiratory exercise test with healthy participants?

By Charlie Wanstall, Geoff Middleton & Danny Taylor
School of Sport & Exercise Science, University of Lincoln, Brayford Campus, UK.

Introduction

- Ingestion of Citrulline Malate (CM) has been shown to improve exercise with beneficial effects reported during strength-based assessments and time trial performance\(^1\).
- CM has been reported to increase plasma arginine availability (see figure 1) and subsequent nitric oxide (NO) production, leading to increased blood flow.
- Citrulline, in particular, accelerates the ureagenesis cycle resulting in the removal of ammonium, while Malate is essential for oxidative metabolism which regulates skeletal muscle functions including glucose and fatty acid oxidation.
- Despite this, the metabolic influence of CM has received little attention in the literature. Much of the current literature has primarily focused on performance outcomes during high intensity exhaustive exercise.
- The purpose of this study was to investigate the effects of CM on substrate utilisation during a low-to-moderate cardiorespiratory exercise test.

Methods

- Respiratory data was subsequently entered into stoichiometric equations to calculate fatty acid oxidation (FAO; g·min\(^{-1}\)) and carbohydrate oxidation (CHO; g·min\(^{-1}\)), equations 1 and 2 respectively.\(^2\)

 \[(1) \text{FAO} = 1.695 \times \text{VO}_2 - 1.701 \times \text{VCO}_2\]

 \[(2) \text{CHO} = 4.585 \times \text{VCO}_2 - 3.226 \times \text{VO}_2\]

- Data Analysis: A paired samples t-test was conducted to compare the time to complete the exercise test following either CM or PLA consumption.

Results

- There was no significant difference reported for the time (min) to complete the exercise test (\(P>0.05\)). No statistical difference was found between conditions for FAO and CHO (g·min\(^{-1}\)) at any time point (see figure 2).
- All other data showed no significant difference (all \(P>0.05\)) in the pre-exercise rest period or at any stage during the exercise test. Main effects similarly showed no significant difference (\(P>0.05\)).

Summary and Conclusion

- Under strict, controlled laboratory conditions and the use of randomisation in design, this novel control trial compared the effects of a low-dose of CM to a PLA under low-to-moderate intensity exercise.
- Interestingly, this experiment found little to support the hypothesis of CM influencing metabolism under these conditions with healthy participants.
- These findings add to a growing research area on CM supplementation and adaptions to this type of trial are possible (dosage/exercise test/sample) for further study.

Acknowledgements

The authors would like to express gratitude to the participants in the study, the laboratory technicians for supporting testing throughout the study and to the secondary experimenters for administering the supplement and upholding the double-blind procedures.

References