Accounting for microsaccadic artifacts in the EEG using independent component analysis and beamforming

Craddock, Matt and Martinovic, Jasna and Müller, Matthias M. (2016) Accounting for microsaccadic artifacts in the EEG using independent component analysis and beamforming. Psychophysiology, 53 (4). pp. 553-565. ISSN 0048-5772

Full content URL: https://doi.org/10.1111/psyp.12593

Documents
Accounting for microsaccadic artifacts in the EEG using independent component analysis and beamforming
[img]
[Download]
[img] Microsoft Word
ICABeamformingAccepted.docx - Whole Document

94kB
Item Type:Article
Item Status:Live Archive

Abstract

Neuronal activity in the gamma-band range was long considered a marker of object representation. However, scalp-recorded EEG activity in this range is contaminated by a miniature saccade-related muscle artifact. Independent component analysis (ICA) has been proposed as a method of removal of such artifacts. Alternatively, beamforming, a source analysis method in which potential sources of activity across the whole brain are scanned independently through the use of adaptive spatial filters, offers a promising method of accounting for the artifact without relying on its explicit removal. We present here the application of ICA-based correction to a previously published dataset. Then, using beamforming, we examine the effect of ICA correction on the scalp-recorded EEG signal and the extent to which genuine activity is recoverable before and after ICA correction. We find that beamforming attributes much of the scalp-recorded gamma-band signal before correction to deep frontal sources, likely the eye muscles, which generate the artifact related to each miniature saccade. Beamforming confirms that what is removed by ICA is predominantly this artifactual signal, and that what remains after correction plausibly originates in the visual cortex. Thus, beamforming allows researchers to confirm whether their removal procedures successfully removed the artifact. Our results demonstrate that ICA-based correction brings about general improvements in signal-to-noise ratio suggesting it should be used along with, rather than be replaced by, beamforming. © 2016 Society for Psychophysiological Research.

Keywords:adult, artifact, brain, brain mapping, electroencephalography, female, human, male, photostimulation, physiology, saccadic eye movement, signal noise ratio, signal processing, young adult, Adult, Artifacts, Humans, Photic Stimulation, Saccades, Signal Processing, Computer-Assisted, Signal-To-Noise Ratio, Young Adult
Subjects:C Biological Sciences > C800 Psychology
C Biological Sciences > C830 Experimental Psychology
C Biological Sciences > C850 Cognitive Psychology
Divisions:College of Social Science > School of Psychology
Related URLs:
ID Code:30952
Deposited On:05 Mar 2018 10:40

Repository Staff Only: item control page