The environmental and geomorphological impacts of historical gold mining in the Ohinemuri and Waihou river catchments, Coromandel, New Zealand

Alastair J.H. Clement1*, Tereza Nováková2,3, Karen A. Hudson-Edwards4, Ian C. Fuller1,5, Mark G. Macklin5,6, Elizabeth G. Fox1, Ignacio Zapico7

1 Physical Geography Group, Institute of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
2 Institute of Inorganic Chemistry AS CR, v.v.i., Husinec-Rez 1001, 250 68 Rez, Czech Republic
3 Institute of Geology of the CAS, v. v. i., Rozvojova 269, 165 00, Prague, Czech Republic
4 Department of Earth and Planetary Sciences, Birkbeck, University of London, Malet St., London WC1E 7HX, UK
5 Innovative River Solutions, Institute of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
6 School of Geography and the Lincoln Centre for Water and Planetary Health, University of Lincoln, LN6 7TS Lincoln, UK
7 Facultad de Ciencias Geológicas, José Antonio Novais, 12, Ciudad Universitaria, 28040 Madrid, Spain

* Corresponding author: Tel: +64 6 951 7847; Email: a.clement@massey.ac.nz

Abstract
Between 1875 and 1955 approximately 250,000 Mg yr\(^{-1}\) of mercury-, arsenic-, and cyanide-contaminated mine tailings were discharged directly into the Ohinemuri River and its tributaries, in the Coromandel Region, North Island, New Zealand. A devastating flood on 14 January 1907 deposited large amounts of mine waste across the floodplain of the Ohinemuri and Waihou rivers in the vicinity of the township of Paeroa. The 1907 mine-waste flood deposit was located as a dirty yellow silt in cores and floodplain profiles, with a thickness ranging from 0.15-0.50 m. Geochemical analysis of the mine waste shows elevated concentrations of Pb (\(~200-570\) mg kg\(^{-1}\)) and As (\(~30-80\) mg kg\(^{-1}\)), compared to early Holocene background concentrations (Pb <30 mg kg\(^{-1}\); As <17 mg kg\(^{-1}\)). Bulk sediment samples recovered from the river channel and overbank deposits also show elevated concentrations of Pb (\(~110\) mg kg\(^{-1}\)), Zn (\(~140-320\) mg kg\(^{-1}\)), Ag (\(~3\) mg kg\(^{-1}\)), and Hg (\(~0.4\) mg kg\(^{-1}\)). Using the mine-waste deposit as a chronological marker shows that sedimentation rates increased from \(~0.2\) mm yr\(^{-1}\) in the early Holocene, to 5.5-26.8 mm yr\(^{-1}\) following the 1907 flood. Downstream trends in the thickness of the flood deposit show that local-scale geomorphic factors are a significant influence on the deposition of mine waste in such events. Storage of mine waste is greatest in the upstream reaches of the floodplain. The volume of mine waste estimated to be stored in the Ohinemuri floodplain is \(~1.13\) M m\(^3\), an order of magnitude larger than recent well-publicised tailings-dam failures, such as the 1996 South America Porco, 2000 Romanian Baia Mare and Baia Borsa accidents, and constituted, and was recognised at the time, a significant geomorphological and environmental event. The mine-waste material remains in the floodplain today, representing a sizable legacy store of contaminant metals and metalloids that pose a long-term risk to the Ohinemuri and Waihou ecosystems.
1. Introduction

Historical metal mining activities routinely disposed of large quantities of mine tailings directly into streams and rivers (e.g., Lewin and Macklin, 1987; Salomons, 1995; Black et al., 2004; Macklin et al., 2006). As a result, river systems in many parts of the world were contaminated by metal-rich wastes in hazardous concentrations (e.g., Macklin et al., 2006 and references therein). River
floodplains function as semi-permanent sinks for these metal contaminants (Bradley, 1989; Moore and Luoma, 1990; Lecce and Pavlowsky, 1997; Black et al., 2004), with the residence time of metal contaminants within the fluvial system regulated by the system’s sediment storage capacity (Bradley, 1989; Macklin et al., 1994; Macklin, 1996; Lecce and Pavlowsky, 1997; Black et al., 2004), sediment transport processes (Lewin et al., 1977; Lewin and Wolfenden, 1978; Bradley, 1984; Lewin and Macklin, 1987; Marcus, 1987; Graf, 1990; Axtmann and Luoma, 1991; Walling et al., 2003; Taylor and Kesterton, 2002), flooding regime (Leenaers, 1989; Macklin and Dowsett, 1989; Miller et al., 1999; Ciszewski, 2001; Marcus et al., 2001; Dennis et al., 2003), and the rate and manner of mine waste disposal during the period of historical mining activity (Bradley, 1989; Rang and Schouten, 1989; Bradley and Cox, 1990; Macklin and Klimek, 1992; Lecce and Pavlowsky, 1997; Macklin et al., 2002). The present-day hazard posed by metal-mining contaminants in floodplain sediments is therefore the product of these geomorphic controls on residence time coupled with contemporary rates of chemical weathering and fluvial erosion of tailings deposits. The contamination legacy of historical metal mining has been investigated in Europe (Lewin and Macklin, 1987; Bradley, 1989; Macklin, 1992; Passmore and Macklin, 1994; Hudson-Edwards et al., 1998; Macklin et al., 2006; Bird et al., 2008, 2010; Macklin et al., 2014), the USA (Lecce and Pavlowsky, 1997; Miller, 1997; Miller et al., 1999; James, 2013), and South America (Hudson-Edwards et al., 2001; Miller et al., 2002). In New Zealand the majority of studies on the impacts of historical mining contamination have focused on water quality and river ecology (Livingston, 1987; Pang, 1995; Webster, 1995; Harding et al., 2000; Harding and Boothroyd, 2004; Black et al., 2005; Harding, 2005; Webster-Brown and Craw, 2005; Boseley and Mauk, 2008). Studies of the legacy effects of the
The historical discharge of mine tailings in New Zealand river sediments have previously focused on either bedrock-confined channels (Shag River catchment in Otago; Black et al., 2004), or small, short, steep catchments (catchments of the western Coromandel Peninsula between Waiomu and Thames; Craw and Chappell, 2000), which lack substantial floodplains. It has been found that in such systems the historical mine waste has been effectively flushed from these catchments. However, in the large floodplain system of the Ohinemuri and Waihou rivers, historical documentation shows that large amounts of mine waste was deposited on the floodplain during flood events in the early twentieth century (AJHR, 1910), and studies of water quality in the Waihou River show ongoing contamination of water and suspended sediment (Webster, 1995). This study aims to fill this knowledge gap by quantifying the contamination legacy of mine waste discharged by historic gold mining activities preserved in the floodplains of the Ohinemuri and Waihou rivers.

2. Study area

2.1. Historical gold mining activities in the Coromandel region and their environmental impacts

Historical gold-mining activities in New Zealand were principally focused in the South Island goldfields of Nelson and Marlborough, Westland, Otago, and Southland, and the North Island goldfields located on the Coromandel Peninsula. Alluvial gold was first discovered near Coromandel town in the north of the peninsula in 1852, triggering a short-lived gold rush (Downey, 1935; Salmon, 1963; Moore and Richie, 1996). Subsequent discoveries of gold-bearing quartz reefs to the south led to the establishment of the Coromandel goldfield in 1862.
and the Thames goldfield in 1867 (Weston, 1927; Downey, 1935; Salmon, 1963). By the late 1860s there was considerable expectation among prospectors that the Ohinemuri River catchment would be opened up for mining (Moore and Richie, 1996). However, the Ohinemuri catchment was Maori land and the local chief was emphatically opposed to mining; six years elapsed before an agreement was reached (Salmon, 1963; Moore and Richie, 1996). The Ohinemuri Goldfield was opened in March 1875 with a literal rush of over 800 prospectors seeking claims (McCombie, 1897).

Initial disappointment at the lack of alluvial gold in the Ohinemuri was tempered by the discovery of gold-bearing quartz reefs in the Waitekauri Valley and at Owharoa (Salmon, 1963; Moore and Richie, 1996). Substantial gold-bearing reefs were subsequently discovered at Waihi in 1878 (the ‘Martha Reef’), and on Karangahake Mountain in 1882 (Weston, 1927; Downey, 1935; Salmon, 1963). However, the low-grade concentrations of gold and the sulphide content of the reefs defied initial attempts to profitably recover gold from workings across the Ohinemuri. Traditional methods of wet crushing and mercury amalgamation (Downey, 1935) were only able to recover around 45-50% of the gold content (Moore and Richie, 1996; Boseley and Mauk, 2008). The advent of the cyanide process for gold extraction, first trialled internationally on a large-scale commercial basis by New Zealand Crown Mines at Karangahake in 1899, provided an efficient method of gold extraction, enabling approximately 90% of the gold content to be recovered (Moore and Richie, 1996).

The waste-rock by-product of ore crushing and amalgamation or cyanide processing was discharged directly into the Ohinemuri River and its tributaries from stamper batteries throughout the catchment between 1875 and the early

There are differing estimates of the volume of tailings discharged into the Ohinemuri River and its tributaries. Contemporary estimates of the tailings discharged varied from between ~1500 Mg d\(^{-1}\) (~560,000 Mg yr\(^{-1}\); AJHR, 1910), to about ~2030 Mg d\(^{-1}\) (~741,000 Mg yr\(^{-1}\); Ohinemuri Gazette, 1910). Evidence presented before the Waiho and Ohinemuri Rivers Commission suggested that in the period 1895-1910 over 4,065,000 Mg of tailings were discharged into the Ohinemuri River and its tributaries (AJHR, 1910). The 1921 Rivers Commission later put the total volume of tailings discharged into the Ohinemuri River at ~6,098,000 Mg (AJHR, 1921). Morgan (1988) estimated that during its years of operation the Victoria Battery at Waikino was discharging 800 Mg of cyanide-impregnated tailings every day (~292,000 Mg yr\(^{-1}\)). Watton (1995) estimated the total yearly tailings discharge from all sources into the Ohinemuri River to be around 250,000 Mg yr\(^{-1}\).

The discharge of mining waste into the Ohinemuri River and its tributaries resulted in the rapid silting-up and narrowing of the channel, with around 2,200,000 Mg of sandy tailings deposits estimated to be present in the riverbed downstream of Mackaytown in 1910 (AJHR, 1910). Constriction of the river channel resulted in severe floods regularly depositing mine tailings on farmland adjacent to the river (Ohinemuri Gazette, 8 August 1900; AJHR 1910). A major flood on 14 January 1907 resulted in the extensive deposition of mine tailings.
across the Ohinemuri and Waihou floodplains near Paeroa, causing widespread, significant damage to property, farmland, and stock (Figs. 2, 3, and 4; AJHR, 1910). This was followed by further floods in 1908, 1909, and 1910, that brought further destruction to the infrastructure of Paeroa township and surrounding farmland (AJHR, 1910; Watton, 1995). In March 1910 the government bowed to public pressure to investigate the silting of the Ohinemuri River and the consequent flooding hazard, and established a commission of inquiry (AJHR, 1910). The commission recommended that the 1895 proclamation of the Ohinemuri River as a sludge channel be revoked, and that flood protection measures be undertaken. This initiated an ongoing, 115-yr-long programme of flood control measures, including dredging the river channel, cutting new channels for the river, and construction of stop-banks to constrain floodwaters (Fig. 4; AJHR, 1910; Watton 1995). Beyond flood control measures, no remediation efforts have been undertaken to counter the potential environmental impacts of the discharge of mine waste into the Ohinemuri River.

2.2. Physical geography, geology, tectonic setting, and gold mineralisation of the Ohinemuri catchment

The Ohinemuri River rises in the eastern Coromandel-Kaimai Ranges, and flows west for about 28 km to join the Waihou River near the township of Paeroa (Fig. 1). The Ohinemuri River initially flows through the Waihi Basin formed in a volcano-tectonic depression filled with early-Pleistocene and Pliocene ignimbrites and lake deposits (Braithwaite and Christie, 1996; Christie et al., 2001; Ling, 2003). The Ohinemuri River has several small tributaries, including the Waitekauri River that joins the Ohinemuri at Waikino, and the Waitawheta River that joins
the Ohinemuri at Karangahake (Fig. 1). At Karangahake the Ohinemuri River changes character, becoming deeply entrenched within an antecedent, vertically-sided gorge cut during the uplift and eastward tilting of the western Coromandel-Kaimai Ranges (Henderson and Bartrum, 1913; Braithwaite and Christie, 1996).

West of the Karangahake Gorge, the Ohinemuri River exits the ranges and meanders across the open country of the Waiho River floodplain. At Paeroa the confluence of the Ohinemuri and Waihou rivers has been altered as part of the Waihou flood protection scheme, with a cut made to shorten and straighten the path of the Waihou channel and shift the Waihou-Ohinemuri confluence downstream of Paeroa (Fig. 4).

The Ohinemuri River catchment covers approximately 287 km², the majority of which is the hilly to mountainous terrain of the Coromandel-Kaimai Ranges (Fig. 1; Watton, 1995). Elevations within the catchment range from approximately 160 m to over 760 m. The steeper parts of the catchment are forest-covered, while the lower-elevation eastern part of the catchment within the Waihi Basin is rolling farm country (Watton, 1995). The climate of the catchment is warm and wet: average temperatures for the catchment range from 18°C in the summer months to 10°C in winter. The average annual rainfall in the high-relief north of the catchment is 2700 mm yr⁻¹, falling to 1500 mm yr⁻¹ in the south and in the east towards the coast (Maunder, 1974; NIWA 2002). The Ohinemuri River has a mean flow of 12 m³/s and a minimum flow of 1.1 m³/s, gauged at Karangahake Gorge (cf. Fig. 1C). Monthly mean flow peaks at ~20 m³/s in June, with a minimum monthly mean flow of ~6 m³/s in January. Given the compact nature of the catchment, high relief, high rainfalls, and lower than average permeability, the Ohinemuri River has a time of concentration of around six hours (Watton, 1995).

The largest flood in the Ohinemuri since records began in 1956 occurred on 13
April 1981 during the Waikato Storm, with a peak discharge of 1047 m3/s recorded at Karangahake (NIWA, 2002). The largest historic flood in the catchment was the 1910 flood (Jane and Green, 1983), during which the Ohinemuri River reached a peak stage of 42.18 m (compared to only 18.66 m in 1981; NIWA Historic Weather Events Catalog). Historically, flood events typically occur in late summer, associated with ex-tropical cyclones (De Lisle, 1967; Jane and Green, 1983; Phillips, 2000).

The gold deposits of the Ohinemuri Goldfield occur as quartz veins produced by epithermal mineralisation driven by hydrothermal systems associated with late Miocene subaerial volcanism (Brathwaite and Christie, 1996; Christie et al., 2007, 2008; Mauk et al., 2011). Mineralisation is tectonically-controlled, with the quartz veins occupying high-angle extensional fractures opened predominantly by normal dip-slip movement (Christie et al., 2008; Mauk et al., 2011). Individual deposits occur as vein systems formed of arrays of extensional veins surrounded by zones of hydrothermally-altered rock that range in size from ~5-14 km.

3. Methods and materials

Bulk samples of approximately 150 g were taken from overbank (Wi-1) and channel sediments (Ke-1 to Ke-4) along the course of the Ohinemuri River (Fig. 4). Bulk samples were also taken from floodplain profiles in exposed riverbanks (Oh-1 to Oh-5, and Wai-1 to Wai-4), and percussion cores (G and M) were collected within the study reach (Fig. 4). Floodplain profiles were sampled to track downstream and lateral variations in grain size and geochemistry. Floodplain cores characterise flood-basin deposits to provide a long-term Holocene
sedimentation context, whereas the near-channel floodplain profiles capture historic and mining-age sedimentation.

Floodplain core M was split, with one half sampled and analysed for As, Cu, Fe, Pb, and Zn using hand-held XRF (Table 1; Niton XLT 700 series, Thermo Fisher Scientific, Germany, internal calibration of the instrument recalibrated annually). Floodplain core G was also analysed using hand-held XRF Niton to measure As, Cu, Fe, Pb, and Zn (Table 1).

Riverbank and in-channel bulk samples (Wi-1, Ke-1 to Ke-4, collected in February 2014) were air dried and sieved, and the <0.63 μm fraction was used for geochemical analysis. A subsample of 0.5 g was treated with 2 ml of nitric acid and left for 1 hr, after which 18 ml of distilled water was added. Following HF-HNO₃ digestion, concentrations of As, Ag, Hg, Pb were determined using inductively coupled plasma mass spectrometry (Table 1; ICP-MS, Thermo-Finnegan Element 2 Magnetic Sector ICP-MS, Thermo Scientific, Germany), and Cu and Zn were analysed using atomic absorption spectrometry (Table 1; AAS, Perkin Elmer AAnalyst 400, USA). A comparison was made of the Niton XRF measurements of Pb and As with ICP-MS measurements of the same elements, as well as a comparison of the Cu and Zn concentrations measured by both the Niton XRF and AAS (Supplemental Table 1), with measured concentrations from all three instruments showing suitable correlation.

Concentrations of As, Cu, Fe, Pb, Zn in sediments from riverbank sections (Oh-1 to Oh-5, Wai-1 to Wai-4, collected in February 2015) were analysed, following air-drying, sieving, extraction of the <0.63 μm fraction, and digestion in HF-HNO₃, using inductively coupled optical emission spectrometry (Table 1; ICP-OES, Varian 720-ES, axial configuration, using a simultaneous solid state detector, CCD). The
precision and accuracy of the digestions was determined using duplication
samples to 10% of the total number of samples, and with certified soil reference
material GBW07404 for ICP-OES measurements and standard reference material
NIST 1643a for ICP-MS measurements. Average precisions ranged between 3-8%,
and average accuracies between 5-11%. Correlation of the 2014 and 2015
datasets was achieved by comparing the results for the mine waste layer in Oh-3,
which was analysed in both years. The 2015 results for As, Cu, Fe, Pb and Zn are
within 10% of the 2014 results.

Sediment samples of approximately 4 g were taken at 10 cm intervals along the
length of cores M and G for particle size analysis. Approximately 30 ml of
hydrogen peroxide (25%) was added to each sediment sample and left to react.
Once the chemical reaction ceased samples were centrifuged at 5000 rpm for 5
min. Each sample was then decanted, washed with distilled water, and
centrifuged again, with the process repeated until all the hydrogen peroxide was
removed. Each sample was agitated before analysis to prevent flocculation.
Particle size was analysed using a Horiba Partica LA-950v2 laser scattering particle
size distribution analyser, with each sample analysed three times.

Fragments of wood and charcoal recovered from the percussion cores M and G
were radiocarbon-dated at the University of Waikato Radiocarbon Dating
Laboratory using accelerated mass spectrometry (AMS) dating (Table 2).
Conventional radiocarbon ages were calibrated to sidereal years using Calib 7.1
(Stuiver and Braziunas, 1993; Stuiver and Reimer, 1993), and the Southern
Hemisphere calibration curve SHCal04 (McCormac et al., 2004). All calibrated
radiocarbon ages are presented using the 2-sigma uncertainty term (95% degree
of confidence).
4. Results

4.1. Pre-mining floodplain stratigraphy

The Ohinemuri floodplain sediments in cores M and G largely comprise fine-grained clayey silts (Figs. 5 and 6). A tephra unit is preserved in core G at 120-130 cm, which is constrained by a \(^{14}\)C age from a sample of fossilised wood at 100 cm depth of 8790 ± 190 cal BP (Fig. 5). According to Lowe et al. (2013), this tephra layer could be deposited either in conjunction with the Rotoma event (c. 9472 ± 40 cal BP) or the Opepe event (c. 9906 ± 246 cal BP). A tephra unit is also present in the floodplain profile Oh-3 at a depth of 150 cm (Fig. 7), though no organic material was present to constrain the age of this tephra. Fine-grained sedimentation characterised the Ohinemuri floodplain during the Holocene through to European settlement, with a mid-Holocene \(^{14}\)C age from fossil rootlet material at 160 cm in core M of 5870 ± 120 cal BP (Fig. 6).

4.2. Post-mining floodplain stratigraphy

Mapping of the 1907 mine waste flood deposit, described as a dirty yellow-brown talcum-like silt (AJHR, 1910, Phillips, 1986; Watton, 2006), indicates dispersal across the area where core G was recovered (Fig. 4). This layer has previously been described by Philips (1986) from archaeological excavations of Raupa Pa and Waiwhau Pa, between 0.5-1 km from the locations where cores G and M were recovered. However, core G contains no yellow silt unit, and concentrations of elements characteristic of mine tailings such as Pb, As, and Cu, are low (Fig. 5). Core M contains an 18 cm thick unit of yellow-coloured silty sand between 42-60
cm depth. This unit contains high concentrations of Pb, As, and Cu (Fig. 6). Above
the yellow silty sand unit floodplain sediments in core M consist of silty sands, of
a much coarser grade than pre-European sediments.

A downstream sequence of historic floodplain sedimentation is given in sites Oh-1
to Oh-5 and Wai-4 to Wai-1 (Figs. 8 and 9). Sites Oh-1 and Oh-2, together with
percussion cores M and G, are located upstream of the pre-1910 confluence of
the Ohinemuri and Waihou rivers (Fig. 4). The most upstream site (Oh-1), within
the Karangahake Gorge, contains several yellow-coloured silty sand units, each
containing high concentrations of Pb, As, and Fe (Figs. 7 and 8). Oh-2 contains a
similar yellow-coloured silty sand unit, also with high concentrations of Pb, As,
and Fe (Fig. 8).

The floodplain profile exposed in the cut bank of the Ohinemuri River at site Oh-3
features a 20 cm thick yellow silty sand unit with high concentrations of Pb, As,
and Fe (Fig 7). This is overlain by a 100 cm thick sequence of fluvial silts and
sands. At Oh-4, there is a 20 cm thick yellow silty sand unit with high Pb, As, and
Fe concentrations, overlain by 100 cm of brown fluvial sands (Figs. 7 and 8). Oh-5
similarly features a 70 cm thick yellow silty sand unit with a similar geochemical
signature, overlain by an 80 cm thick unit of light brown sand. Sites Oh-4 and Oh-
5 are both distinguished by coarser, sandy sediments (Fig. 7).

Downstream of the pre-1910 confluence, sections Oh-3 to Oh-5 and Wai-4 to
Wai-1 are located along the pre-1910 Waihou River course (Fig. 4). Sections Wai-1
to Wai-3 do not feature the yellow silty sand unit found in core M and sections
Oh-1 and Oh-2, and comprise sequences of silty sands and coarse sand (Fig. 9). At
Wai-4, the most downstream section, a 15 cm thick layer of finely-layered, pale
grey and orange, silty sands featuring high concentrations of Pb, As, Zn, and Cu is
preserved at 45-60 cm depth (Fig. 9). This unit is overlain by 45 cm of clayey silt.

4.3. Floodplain geochemistry

As described above, a yellow silty sand unit is commonly identified in river bank sections along the course of the Ohinemuri and Waihou rivers downstream of the Karangahake Gorge. This unit matches historical descriptions of the mine tailings deposited on the Ohinemuri floodplain during the 1907 flood (AJHR, 1910). The yellow silty sand unit preserved in core M and sections Oh-1 to Oh-5 and Wai-4 is characterised by high concentrations of Pb, Cu, and As.

As previously noted, percussion core G does not feature a yellow silty sand layer (Fig. 5). Concentrations of contaminant metals and As are low throughout the length of the core, except in the tephra layer which has elevated concentrations of Pb (~40 mg kg⁻¹), Zn (~200 mg kg⁻¹), As (~20 mg kg⁻¹), and Fe (~40,000 mg kg⁻¹). As this core covers the period from the early Holocene back to c. 8800 cal BP, it provides a useful context for characterising the pre- and post-mining sediment geochemistry in the Ohinemuri catchment.

In core M, below 150 cm depth, early Holocene background concentrations of contaminant metals and As are low: Pb <30 mg kg⁻¹; Fe <30,000 mg kg⁻¹; As <17 mg kg⁻¹; and Cu <50 mg kg⁻¹ (Fig. 6). A minor increase in Pb, Zn, and As concentrations compared to background levels at 211-215 cm depth coincides with an influx of sand. The Zn concentration in the core increases from 160 mg kg⁻¹ at 190 cm depth, to 370 mg kg⁻¹ at 125 cm; this peak coincides with a clayey silt unit from 104-150 cm depth. Concentrations of Pb, Cu, and As peak between 42-60 cm depth in a yellow silty sand unit. Above this yellow silty sand unit
concentrations of Pb, Cu, and As are significantly elevated compared to the low background concentrations exhibited in the lower part of the core (Fig. 6).

The floodplain profile Oh-1 exhibits peak concentrations of Pb (570 mg kg⁻¹) and As (73 mg kg⁻¹) between 250-260 cm depth, coincident with a yellow silty sand unit (Fig. 7). Three thin (3-4 cm thick) yellow silty sand units are evident lower in the profile, and exhibit concentrations of Pb and As, that while lower, are significantly elevated when compared to the early Holocene background concentrations present in cores G and M (Figs. 6 and 7). Background concentrations of Zn and Cu do not vary significantly throughout the profile.

Downstream of Oh-1, floodplain profiles Oh-2, Oh-3, and Oh-4 all exhibit similar peak concentrations of Pb (320-540 mg kg⁻¹) and As (55-69 mg kg⁻¹) in single, thick (10-50 cm) yellow silty sand units (Fig. 7). In the sediment above and below the yellow silty sand unit, concentrations of Pb and As are much lower, in line with background concentrations exhibited in cores M and G (Figs. 5 and 6). In section Oh-5, Pb and As concentrations are elevated in a yellow silty sand unit. However, peak concentrations of Pb and As, as well as peaks in Zn and Cu concentrations are observed immediately below this unit, between 135-150 cm depth, in a grey silty sand unit (Figs. 7 and 10). This is either a primary signature representing deposition of mine waste from a flood event prior to 1907, or it may reflect chemical remobilisation of the As, Cu, Pb and Zn. The grey colour (Fig. 10) may be due to reductive dissolution of As-, Cu-, Pb- and Zn- Fe-bearing minerals in the sands (cf., McArthur et al., 2004; Kosloff et al., 2011) and downward remobilisation of the metalloid and metallic elements (cf., Hudson-Edwards, et al., 1998). The remobilised elements may have then been redeposited in secondary Fe hydroxides like those in Fig. 10.
In floodplain profiles Wai-1 to Wai-3 (Fig. 9), concentrations of As, Cu, and Fe are close to early Holocene background levels exhibited in cores M and G. Concentrations of Pb and Zn in these floodplain sections are slightly elevated (Pb 100-300 mg kg\(^{-1}\); Zn \~100 mg kg\(^{-1}\)) compared to background levels, though concentrations of both metals are well below levels exhibited in yellow silty sand mine-waste flood deposits found in other locations. Floodplain profile Wai-4, well downstream of the mapped extent of the 1907 floodplain deposit, exhibits a yellow silty sand unit with high concentrations of Pb and As, and peak concentrations of Zn and Cu at the base of the unit (Fig. 9).

4.4. Overbank and channel deposit bulk sediment geochemistry

Bulk sediment samples of in-channel sediments (Ke-1 to Ke-4) and overbank alluvial deposits (Wi-1) were recovered from the Ohinemuri River within the Karangahake Gorge, from the Ohinemuri River immediately downstream of Waihi town, and from the Waitekauri River, a major tributary of the Ohinemuri (Fig. 4). Samples Wi-1 and Ke-3 (Table 3) showed elevated concentrations of Pb (104-110 mg kg\(^{-1}\)), Zn (140-320 mg kg\(^{-1}\)), and Ag (2.5-2.9 mg kg\(^{-1}\)) compared to the Holocene background levels measured in cores M and G. However, these concentrations are much lower than those measured in the yellow sandy silt unit found across the Ohinemuri floodplain. In samples Ke-1, Ke-2 and Ke-4 (Table 3) concentrations of Pb, Zn, Cu, and Ag were in line with background levels. The concentration of As in sample Ke-2 (40 mg kg\(^{-1}\)) is in line with As concentrations measured in the yellow silty sand unit found in core M (Fig. 6) and sections Oh-1 to Oh-5 (Fig. 7). All samples showed elevated concentrations of Hg (0.3-0.5 mg kg\(^{-1}\)).
5. Discussion

5.1. The 1907 flood mine-waste deposit

Historic mapping of the 1907 mine-waste flood deposit, described as a dirty yellow-brown talcum-like silt (AJHR, 1910, Phillips, 1986; Watton, 2006), indicates widespread dispersal across the Ohinemuri floodplain. A yellow silty sand unit characterised by high concentrations of Pb, As, and Fe, interpreted to be the 1907 mine waste flood deposit, can be traced for ~20 km along Ohinemuri and Waihou river courses downstream from the Karangahake Gorge. The distribution of this deposit in the cores and floodplain sections is more extensive than was historically mapped (cf. Fig. 5). The thickness of the mine-waste flood deposits and post-mining alluvium progressively thins with increasing distance downstream from the Karangahake Gorge, from more than c. 300 cm at Oh-1 to ~15 cm at Wai-4.

In core M, the yellow silty sand unit with high concentrations of Pb, As, and Cu (Fig. 6) is interpreted, based on the visual, sedimentological, and geochemical characteristics, as mine-waste tailings deposited on the floodplain in the 1907 flood. Core G contains no yellow silt unit (Fig. 5), despite the core being recovered from an area indicated to have been inundated by mine waste similar to core M (see Fig. 4). The absence of mine waste in core G is interpreted as post-1907 agricultural development (‘humping and hollowing’ – a practice of mechanically contouring the land into long, low ridges ['humps'] interspersed with shallow drainage ditches ['hollows'] to improve drainage and pasture production; e.g., McDowell, 2008; Horrocks et al., 2010) in that location removing the upper layer of floodplain sediments containing the 1907 mine-waste flood deposit.
Section Oh-1 is located on a fluvial bench inset beneath the spatially-restricted fluvial terrace on the true-left of the Karangahake Gorge (Figs. 4 and 11). Oh-1 features four yellow silty sand units with elevated concentrations of Pb and As interbedded with course sand units (Fig. 7). The uppermost, thicker (~20 cm thick) yellow silty sand unit with peak Pb and As concentrations is interpreted as the 1907 mine-waste flood deposit. This extends the historic mapping of the 1907 flood deposit, which did not record mine-waste flood deposits within the Karangahake Gorge (Fig. 4). The three thinner (~3-4 cm thick) yellow silty sand units below are interpreted as deposits from smaller, pre-1907 floods. These smaller flood events are likely to have been of sufficient magnitude to deposit mine waste on the inset bench within the confinement of the gorge, but were insufficient to overtop the Ohinemuri’s banks downstream of the gorge. Therefore it is possible that the only record of these lower-magnitude flood events lies within the spatial confinement of the gorge (cf. Fig. 12).

Downstream of Oh-1, floodplain profiles Oh-2, Oh-3, and Oh-4 all contain a similar yellow silty sand unit with peak concentrations of Pb and As that is interpreted to be the 1907 flood mine-waste deposit (Fig. 7). In section Oh-5, Pb and As concentrations are elevated in a yellow silty sand unit interpreted to be the 1907 flood mine-waste deposit. However, peak concentrations of Pb and As, as well as peaks in Zn and Cu concentrations, are observed immediately below this unit between 135-150 cm depth in a grey silty sand. This lower unit is interpreted to be reduced mine waste (Fig. 10).

Mine waste is absent from floodplain profiles Wai-1 to Wai-3 (Fig. 9), though all three locations are sited within the historically-mapped extent of the 1907 flood mine-waste deposits (Fig. 4). The historic mapping of the 1907 flood deposits
describes the mine waste to the north of Wai-2 as a “light silt deposit”. It is therefore possible that visual evidence of the deposits at Wai-1 to Wai-3 was obscured by post-flood bioturbation or agricultural practices. Mine waste at Wai-2 may have been removed during the emplacement of the Waihou cut, designed to shift the Waihou-Ohinemuri confluence to the west and straighten the Waihou channel (Fig. 4). A thin layer (~15 cm) of yellow silty sand with elevated concentrations of Pb and As, interpreted to be the deposit of the 1907 flood, is present at Wai-4 (Fig. 9), approximately 2.5 km downstream of the historically-mapped extent of the 1907 flood deposit (Fig. 4). As with Oh-5, peak concentrations of Pb, As, as well as peaks in Zn and Cu are observed immediately below the mine-waste unit, and this is interpreted as post-deposition reduction of the mine-waste deposit.

5.2. Volume of the 1907 mine-waste flood deposit stored in the floodplain

The mapped extent of the 1907 mine-waste flood deposit (AJHR, 1910), coupled with our new data on the thickness of the deposits at the channel edge, provides a basic framework from which to estimate the volume of mine waste currently stored in the Ohinemuri and Waihou river floodplains (Table 4). The historically-mapped extent of the mine waste deposit (AJHR, 1910) was extended downstream to include Wai-4, where mine waste was located in the floodplain section, but was not historically mapped (Supplemental Fig. 1). The mapped extent of the mine-waste deposit was also expanded in the vicinity of Mackaytown, to include inset terraces downstream of Oh-1, where mine waste was also located in this study but not historically mapped. The thickness of the mine waste at the channel edge of each polygon in the mapped extent
(numbered 1 to 18 on Supplemental Fig. 1) was taken from cores and floodplain sections examined in this study (Table 4; cf. Figs. 6, 7 and 9). In order to account for the decreasing thickness of mine waste with increasing distance from the channel, a factor of 0.65 was applied to the volume of mine waste calculated for each polygon. This factor follows the simple case where the mine waste thickness decreases from 100% at the channel edge, to 30% at the distal margin of the mapped extent. This assessment suggests the volume of solid mine waste deposited on the floodplain by the 1907 flood event to be approximately 1,130,000 m3 (Table 4). Assuming an average density of 2 Mg/m3 this equates to 2,260,000 Mg of mine waste, approximately 38% of the amount estimated to have been discharged into the Ohinemuri River between 1895-1910 (AJHR, 1921).

This estimate does not include mine waste within the channel, which was estimated to be approximately 2,200,000 Mg in the riverbed downstream of Mackaytown in 1910 (AJHR, 1910). These volumes of mine waste are extremely large in a New Zealand context (cf. Black et al., 2004).

In comparison with the 2014 Mount Polley (25 M m3, Bryne et al., 2017) and 1998 Aznalcóllar (7 M m3, Hudson-Edwards et al., 2003) tailings dam failures, the dispersal and deposition of ~1.13 M m3 in the 1907 flood would appear to have been globally a relatively small spill. However, it was significantly larger (c. 10 times) than the well-publicised 1996 South American Porco (0.235 M m3, Macklin et al., 2006) as well as the 2000 Romanian Baia Mare (0.1 M m3, Macklin et al., 2006) and Baia Borsa (0.12 M m3, Macklin et al., 2006) accidents. This indicates that it constituted, and was recognized at the time, a significant geomorphological and environmental event. Indeed, it prompted the creation and subsequent investigations of the Waihou and Ohinemuri Rivers Commission,
a nationally significant event in the history of environmental regulation in New Zealand.

Estimates of the mine waste stored in other historical mining-affected catchments are normally given as area rather than volume measurements since thicknesses cannot be determined unless coring is carried out, as we have done for this study. For example, the extent of metal contamination in floodplains of the mining-affected Río Pilcomayo in Bolivia, River Swale in northern England and Belle Fourche River in the USA have been reported as 35 km2, 25.4 km2 and 14.5 km3, respectively (Andrews, 1987; Dennis et al., 2008; Balaban et al., 2015). If average thicknesses of these deposits are assumed to be 1 or 2 m, then these areas translate as volumes of 35 or 70 M m3, 25.4 or 50.8 M m3 and 14.5 or 29 M m3, respectively. These are all significantly larger than the 1.13 M m3 of mining-affected material estimated to be contained in the Ohinemuri system, re-emphasising the relative small size of this system on a global scale.

5.3. Floodplain sedimentation rates

The 1907 flood mine-waste deposit provides a distinctive stratigraphic horizon that may be used to evaluate pre- and post-mining sedimentation rates in the Ohinemuri catchment. The radiocarbon date from core G indicates a pre-European floodplain sedimentation rate of ~0.09 mm yr$^{-1}$, though this is interpreted to be a minimum rate as agricultural practices may have removed floodplain sediment from this location (Fig. 5). In core M the radiocarbon age and mine-waste layer suggest that prior to the onset of European mining activities, the long-term average Holocene sedimentation rate was ~0.2 mm yr$^{-1}$ over the past c. 8800 cal BP.
Post-mining sedimentation rates may be reconstructed using the mine-waste layers found across the floodplain. In core M, the rate of floodplain sedimentation accelerated by an order of magnitude to ~5.5 mm yr\(^{-1}\) in the upper 60 cm of the core that is delimited by the 1907 mine-waste flood deposit (Fig. 6). In the floodplain profiles, the highest rate of post-mining sedimentation is recorded at Oh-2, at ~26.8 mm yr\(^{-1}\). The post-mining sedimentation rate is similar at Oh-1, at ~22.5-24.5 mm yr\(^{-1}\). Post-mining sedimentation rates decrease downstream to ~10 mm yr\(^{-1}\) between Oh-3 to Oh-5, and fall to the lowest rate of ~5.5 mm yr\(^{-1}\) at Wai-4 (Fig. 12). These rates correspond with the broadening of the floodplain, (Fig. 11). In all sections the anthropogenic sedimentation rate is an order of magnitude greater than background Holocene sedimentation rate recorded in cores G and M.

While it has been noted anecdotally that historic gold mining activities in Golden Bay, Otago, and Coromandel resulted in significant increases in sediment supply in mining-impacted catchments (Black et al., 2004; Fuller et al., 2015), there have been no quantitative measures of the change in sedimentation rates in response to mining activities in New Zealand. In Northland the impact of Maori and European settlement on sedimentation rates has been explored by Richardson et al. (2013, 2014). Background Holocene sedimentation rates in Northland were ~<1 mm yr\(^{-1}\). In the past ~500 yr, Richardson et al. (2013, 2014) observed acceleration in floodplain sedimentation rates to ~8-13.5 mm yr\(^{-1}\) in the Northland Region. Follow-up work at Kaeo in Northland suggests sedimentation rates increased to at least 25 mm yr\(^{-1}\) in the last 50 yr (Fuller et al., 2015). These accelerated rates of sedimentation have been attributed to post-settlement deforestation, initiated by Polynesian settlement, and exacerbated by European colonisation, which mirrors a similar pattern of late-Holocene acceleration in
sedimentation rates observed elsewhere in the world (Macklin et al., 2010; Turner et al., 2010; Macklin et al., 2014).

Holocene pre-Polynesian settlement sedimentation rates for the Ohinemuri catchment (cores M and G) are similar to those observed in Northland by Richardson et al. (2013, 2014). Peak post-mining sedimentation rates in the Ohinemuri (Oh-1 and Oh-2) are around double the post-settlement (Polynesian) sedimentation rates observed in Northland, although they are equivalent to those observed in the last ~50 yr at Kaeo (Fuller et al., 2015). At sites downstream of the Karangahake Gorge on the Ohinemuri floodplain (Oh-3 to Oh-5, and Wai-4), post-mining sedimentation rates (~5.5-10 mm yr\(^{-1}\)) are similar to more region-wide post-settlement sedimentation rates in Northland catchments (8-13.5 mm yr\(^{-1}\)). However, the Ohinemuri rates downstream of the Karangahake Gorge occur in an unconstrained floodplain setting (Fig. 11), while the Northland rates come from catchments with confined accommodation space (Richardson et al., 2014). Given the geomorphic context, the post-mining sedimentation rates observed in the Ohinemuri catchment are therefore significant, and speak to the volumes of mine waste being discharged into the system during the period between 1875-1955.

5.4. Downstream contamination trends and influence of fluvial geomorphology on contaminant storage

Downstream trends in the concentration of Pb, As, and Cu, the thickness of the 1907 flood deposit, the mean grain size of the 1907 flood deposit, and the 1907-present sedimentation rate are shown in Fig. 12. The concentrations of Pb, As, and Cu in the mine-waste flood deposit do not change systematically down the
length of the Ohinemuri Valley (Fig. 12A). This contrasts with other studies of
mining contamination in floodplains that have observed a downstream decrease
in metal and metalloid concentrations (e.g., Leigh, 1997; Hudson-Edwards et al.,
2001; Dennis et al., 2003; Miller and Orbock Miller, 2007; Lecce and Pavlowsky,
2014). These examples document the gradual downstream dispersal of mine
waste over periods of c. 200-500 yr. In the case of the Ohinemuri catchment, the
dispersal of mine waste across the floodplain occurred in a single extreme event,
The flood had sufficient capacity to easily convey the mine waste down the length
of the valley, and as a result there is no systematic downstream decrease in
geochemical concentrations in the Ohinemuri. This echoes the findings of Graf
(1990), who also observed incongruence with hydraulic and geomorphic theory in
thorium-203 concentrations that fluctuated irregularly with distance downstream
from a tailings-dam failure.

Distance downstream is also a poor predictor of the thickness of the mine-waste
flood deposit (Fig. 12B). The thickest mine-waste deposits occur at sites Oh-2 and
Oh-5, which appear as outliers compared with the population of other sites.
While previous research has indicated that catchment-scale geomorphic factors
influence contaminant storage trends (e.g., Graf, 1983; Magilligan, 1985, 1992;
Lecce, 1997; Lecce and Pavlowsky, 2014), the degree of variance in the
downstream thickness of the mine-waste deposit in the Ohinemuri suggests that
local geomorphic factors are significant. In the case of Oh-2, this site is
approximately 1.2 km downstream of where the Ohinemuri River exits the
Karangahake Gorge, and is immediately upstream of the confluence with Tarariki
Stream which flows into the Ohinemuri on the true-right (Fig. 11). The
pronounced deposition of mine waste in this location (Fig. 12B) is interpreted to
reflect both the proximity of the site to the source of mine waste in the gorge,
and a drop in stream power as the floodwaters overtopped the channel banks
upon exiting the gorge. Flood waters in the main Ohinemuri channel may have
also been impeded by the discharge of water from the Tarariki Stream, resulting
in enhanced deposition of mine waste at Oh-2. Cross section 2 (Fig. 11) indicates
that this part of the river system has been the locus of deposition, since the
Ohinemuri floodplain is perched some 5 m above the Waihou floodplain to the
east. Accelerated deposition and enhanced thickness of mining wastes in this
vicinity is therefore to be expected in this geomorphic context. Further
downstream at Oh-5, the Ohinemuri River is forced to make an abrupt left turn by
low hills formed from weathered volcanic rocks (Fig. 11). The significant thickness
of mine waste at Oh-5 is interpreted to reflect the ‘ponding effect’ of these low
hills, which form a shallow basin on the true-right of the Ohinemuri channel
where Oh-5 is situated (Figs. 4 and 11). The lower thickness of mine waste
observed at the other sample locations on the Ohinemuri floodplain, between
core M and site Wai-4, reflects diffuse overbank sedimentation on the low
gradient floodplain at a significant distance from the source area of the mine
waste (cf. Leigh, 1997; cf. Fig. 11).

Both the mean grain size of the 1907 mine-waste flood deposit and the post-1907
sedimentation rate display significant downstream trends (Figs. 12C and 12D).
Mean grain size decreases with increasing distance downstream, reflecting a
reduction in stream power in the lower reaches of the Ohinemuri as the channel
gradient reduces. The lack of correlation between downstream distance and
geochemical concentration (Fig. 12A) suggests that Pb, As, and Cu concentrations
are independent of the mine waste grain size. The strong correlation between
downstream distance and post-1907 sedimentation rate reflects the widening of
the floodplain downstream of the Karangahake Gorge and the dispersal of sediments across a broader area.

The downstream trend in storage of the 1907 mine waste deposit is quite striking (Table 4; Supplemental Fig. 1). The volume of mine waste calculated to be stored within the Karangahake Gorge accounts for only 1.5% of the total volume. This reflects both the limited accommodation space for deposition and higher stream power within the gorge (Fig. 11; cf. Graf, 1983; Magilligan, 1985, 1992; Lecce, 1997; Lecce and Pavlowsky, 2014). The ‘heavy silt deposits’ mapped immediately downstream of the gorge (AJHR, 1910) account for a significant 37.5% of the total volume of stored mine waste in the Ohinemuri floodplain. As discussed above, this reflects both proximity to the source of the waste, and a significant drop in stream power as the floodwater exited the gorge (Fig. 11). Mine waste deposits downstream of the 1907 confluence between the Ohinemuri and Waihou rivers (between core G and site Oh-3) account for only 25.5% of the volume of waste stored in the floodplain; 74.5% of the total volume of mine waste is thus stored in the floodplain upstream of the Ohinemuri-Waihou confluence. This distribution of storage is similar to the situation described by Lecce and Pavlowsky (2014) in the Dutch Buffalo Creek watershed, where the majority of historic mine waste is stored in the upper reaches of the mined tributary. Downstream of the Ohinemuri-Waihou confluence, there is both a dilution and a dispersal effect as the Ohinemuri joins the larger Waihou (cf. Fig. 1). That such a clear mine waste deposit should be detected in the Waihou floodplain at Wai-4 demonstrates the significance of the 1907 event in dispersing this contaminated material and speaks to the volume of this sediment in the context of this catchment.
5.5. Environmental legacy and significance of historical gold mining activities in the Ohinemuri catchment

The Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC and ARMCANZ, 2000) outline interim sediment quality guidelines (ISQG) for aquatic ecosystems. The guidelines provide two values for metal contaminants: concentrations below the ISQG-low threshold are unlikely to be toxic; while those exceeding the ISQG-high threshold are likely to be toxic (Table 5). Concentrations within the range between the ISQG-low and ISQG-high values are likely to pose a moderate risk to aquatic organisms.

The layer of mine-waste sediment in core M exceeds the ISQG-high thresholds for Pb and As, and exceeds the ISQG-low threshold for Cu (Fig. 6). Peak concentrations of Zn, while not coincident with the mine-waste layer, exceed the ISQG-low threshold, and come close to the ISQG-high threshold.

In the floodplain profiles Oh-1 to Oh-5 and Wai-1 to Wai-4, 100% of the samples exceed the ISQG-low threshold for Pb, while 41% of the samples also exceed the ISQG-high threshold (Figs. 7 and 9). Concentrations of As exceed the ISQG-low threshold in 44% of the samples, and exceed the ISQG-high threshold in 6% of the samples. Concentrations of Zn are below the ISQG-low threshold in all but two samples (91%), both of which exceed the ISQG-high threshold for Zn.

Concentrations of Cu are below the ISQG-low threshold in 88% of the samples; 12% of the samples exceed the ISQG-low threshold.

The bulk sediment samples recovered from in-channel (Ke-1 to Ke-4) and overbank locations (Wi-1) within the Ohinemuri catchment generally contain low levels of contaminant metals at concentrations below the ISQG-low thresholds; no samples contained metal or metalloid concentrations that exceeded the ISQG-
Concentrations of As exceeded the ISQG-low threshold in 80% of the samples, while Pb and Ag concentrations exceeded the ISQG-low threshold in 40% of the samples. Only one sample exceeded the ISQG-low threshold for Zn, while all bulk sediment samples exceeded the ISQG-low threshold for Hg (Tables 3 and 5).

Metal and metalloid contaminants in river sediments in the Ohinemuri and Waihou catchments have previously been analysed by Beaumont et al. (1987), Webster (1995), and Sabti et al. (2000). The concentrations of contaminant metals in the in-channel and overbank bulk sediment samples recovered for this study are consistent with the findings of these earlier studies. The concentrations of contaminant metals are spatially variable, and likely reflect local factors such as the extent of disturbance, style and scale of mining and ore processing activities, flow rates, and the grain size of tailings (cf. Beaumont et al., 1987).

Contaminant metal and metalloid concentrations in the mine-waste layer located throughout the Ohinemuri pose a moderate to high risk to the Ohinemuri ecosystem. Pb and As occur in potentially toxic concentrations throughout the catchment, while Zn is found in potentially toxic concentrations in distinct locations, possibly as a result of chemical remobilization. Cu concentrations are unlikely to be toxic, though at those sites where the mine waste contaminants have been remobilized, Cu poses a moderate risk to the aquatic ecosystem. However, the averages and ranges of Ohinemuri As, Cu, Pb and Zn concentrations are generally lower than those in other alluvial river systems elsewhere in the world affected by mining activity (Table 6).

5.6. Risks of remobilisation of mine waste in the Ohinemuri
The findings of this study, as well as the work of Beaumont et al. (1987), Webster (1995), and Sabti et al. (2000), all confirm that there remains an ongoing, moderate threat to the aquatic ecosystem in the Ohinemuri and Waihou catchments from the legacy of mining activities that occurred between 1875 and 1955. There remains a sizeable legacy store of approximately 2,260,000 Mg of mine waste within the Ohinemuri floodplain that may be remobilised and transported through the aquatic ecosystem. With concentrations ranging from 200-570 mg kg$^{-1}$ for Pb and 29-73 mg kg$^{-1}$ for As, this equates to approximately 62-1800 Mg of Pb and 92-230 Mg of As stored within the Ohinemuri and Waihou floodplains. This contrasts with the effective natural recovery of the Shag River system, in East Otago (Black et al., 2004); where between 1890 and 1946, historic gold mining activities in the catchment discharged at least 85,000 Mg of mine tailings. The Shag River catchment is a steep, bedrock-dominated stream system with little sediment storage capacity, and Black et al. (2004) calculated that floods would have almost completely removed the mine tailings from the catchment within c. 60 yr.

Given the present low rates of lateral channel movement in the Ohinemuri (there is no demonstrable difference in the position of the Waihou and Ohinemuri river channels today compared to the map published in the 1910 Commission Report; AJHR, 1910), it is extremely unlikely that natural processes will flush mine-waste deposits from the Ohinemuri valley downstream into the Thames estuary. This could occur however during a major flood that resulted in the breaching of stop banks and avulsion of the river channel in a similar manner to the 1907 event. The identification of significant volumes of contaminated mine waste in the Ohinemuri floodplain within the stop bank corridor does have both local and more general implications for channel and floodplain management in similar
historically contaminated urban, industrial and mining-affected river systems in New Zealand. Recent proposals (e.g., Biron et al., 2014; Buffin-Bélanger et al., 2015; Choné and Biron, 2016) to move back and even remove stop banks – so called “freedom corridor” initiatives – to mitigate against increasing flooding resulting from anthropogenic climate change, may need to be rethought in floodplains within or downstream of New Zealand’s major cities and industrial areas in order to avoid inadvertently remobilizing contaminated sediment.

6. Conclusions

The 1907 flood event in the Ohinemuri and Waihou river catchments deposited approximately 1.13 M m3 of gold mining tailings across the floodplain in the vicinity of Paeroa township. While this event was somewhat smaller than the 2014 Mount Polley and 1998 Aznalcollar tailings-dam failures, it was an order of magnitude larger than recent well-publicised tailings-dam failures such as the 1996 South America Porco and 2000 Romanian Baia Mare and Baia Borsa accidents. The flood event and the deposition of the mine waste constituted a significant a significant geomorphological and environmental event, was widely remarked upon at the time, and ultimately prompted the establishment of the 1910 Royal Commission of Inquiry into silting of the Ohinemuri and Waihou rivers. The mine waste deposit from the 1907 flood is easily recognised in cores and floodplain profiles as a dirty yellow-coloured silt. Geochemical analysis of the mine-waste deposit shows concentrations of contaminant metals and metalloids exceed both natural background levels and recommended ISQG values for concentrations of Pb, Zn, Cu, As, Ag, and Hg in aquatic sediments. These concentrations pose a moderate to high risk to the aquatic ecosystem of the
Ohinemuri and Waihou catchments. The 1907 mine-waste flood deposit serves as a chronological marker for calculating pre- and post-mining floodplain sedimentation rates, which increased from ~0.2 mm yr\(^{-1}\) in the early Holocene, to ~5.5-26.8 mm yr\(^{-1}\) following the 1907 flood.

Notably, concentrations of contaminant metals and metalloids do not show a downstream trend, contrasting with other studies of mine-waste contamination in floodplains. This variation in the Ohinemuri is interpreted to reflect the catastrophic single event dispersal of the mine-waste contamination. Local-scale geomorphology is a significant influence on the thickness of mine-waste deposits. Mine waste is thickest immediately downstream of the Karangahake Gorge, and on the lower floodplain where the river is constrained by topography. Mean grain size of the mine-waste deposit and the post-mining sedimentation rate both correlate strongly with distance downstream. This reflects a reduction in stream power and the dispersal of sediments across the increasingly broad floodplain in the lower reaches.

The contaminated floodplain sediments constitute a potentially significant source of secondary pollution for the aquatic environment. There is a risk that in a large flood of equivalent magnitude to the 1907 event, contaminated mine waste could be eroded by channel expansion and/or river channel avulsion resulting in the remobilisation of contaminant metals and metalloids. As the present estimate of the volume of mine waste stored in the floodplain is derived from historic maps and observations along the contemporary channel edge, future work could focus on investigating the thickness and extent of the mine waste deposit at distance from the channel, particularly on the true-left of the Waihou and Ohinemuri rivers, where the floodplain is largely unconstrained by topography.
Acknowledgements

This project was supported by a Massey University Research Fund award to Clement, Fuller and Macklin. Novakova acknowledges support of research plan no. RVO67985831 of the Institute of Geology AS CR v.v.i. Paul Brewer and Willem Toonen are thanked for their assistance with core preparation and NITON XRF measurements, and Gary Tarbuck is thanked for his help with the geochemical analysis. This paper benefitted from helpful discussions and advice from Mike Roche, and the constructive comments of two anonymous reviewers. Thanks to Waikato Regional Council, who made available contour data which was used to produce the floodplain cross sections.

References

Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ), 2000. Australian and New Zealand guidelines for fresh and marine water quality. Volume 1, the guidelines. Australian and New Zealand Environment and Conservation Council (ANZECC) and Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ), Canberra, AU.

Chemical Geology 281, 52-71.

McArthur, J.M., Banerjee, D.M., Hudson-Edwards, K.A., Mishra, R., Purohit, R.,

Radiocarbon 46, 1087-1092.

Geomorphology 9, 127-142.

Weston, F.W., 1927. Thames goldfields: a history from pre-proclamation times to 1927. Thames, NZ.

List of figures and tables

Figure 1

Map of the Ohinemuri and Waihou catchments. (A) New Zealand context map. (B) Map of the Waihou River catchment. (C) Map of the Ohinemuri River catchment showing the location of tributary rivers, towns, mine workings, and stamper batteries. Locations of mine workings and stamper batteries after Moore and Richie (1996).

Figure 2

Photo of a ‘silt-bank’ at Pereniki Bend (see Fig. 4) on the outskirts of Paeroa township, taken in June 1907. The Ohinemuri River channel was formerly
adjacent to the willow tree on the left of the image, and settlers used to tie their
boats to the willow tree in about 6 ft of water. The silt is described as a dirty,
yellow-brown talcum-like silt (AJHR, 1910). Photo from AJHR (1910).

Figure 3

Photo taken in June 1907 of Wairere Paddocks, in the vicinity of Mackaytown (see
Fig. 2), destroyed by silt deposited by the January 1907 flood. The silt is described
as talcum-like and dirty, yellow-brown in colour. (See Fig. 8 for examples of the
contemporary appearance of the mine-waste flood deposit in section.) View is
looking upstream, with the Ohinemuri River behind the willow trees on the left of
the photo. Photo from AJHR (1910).

Figure 4

Map of the study area around the township of Paeroa and the Ohinemuri-Waihou
confluence. Shown are the locations of cores G and M, floodplain sections Oh-1 to
Oh-5 and Wai-1 to Wai-4, and bulk sediment samples recovered from the
Ohinemuri River channel (Ke-1 to Ke-3; see inset map for location of Ke-4) and the
Ohinemuri River bank (Wi-1, see inset map for location). The documented
passage of the 1907 flood is indicated (the ‘zone of overflow’, marked as such in
maps in AJHR, 1910), as is the thickness of post-flood silt deposits mapped as part
of the 1910 inquiry (AJHR, 1910). Post-1910 cuts to the Waihou channel and the
realignment of the Ohinemuri channel are also shown. Flow of both the Waihou
and Ohinemuri rivers is from south to north.

Figure 5
Stratigraphy, sedimentology, and geochemistry results for core G. Geochemical concentrations were analysed using a NITON hand-held XRF scanner. Vertical green lines show the ISQG-low concentrations for Pb, Zn, and As.

Figure 6

Stratigraphy, sedimentology, and geochemistry results for core M. Pb, Zn, Fe, As, and Cu expressed in mg kg⁻¹ were analysed using a NITON hand-held XRF scanner. The layer interpreted to be the 1907 mine-waste flood deposit is shown in yellow. Vertical green and red lines show the ISQG-low (green) and ISQG-high (red) concentrations for Pb, Zn, As, and Cu.

Figure 7

Stratigraphy, sedimentology, and geochemistry results for floodplain profiles Oh-1 to Oh-5. The locations of these sections are shown on Fig. 5. Concentrations of Pb, As, Zn, Cu and Fe were determined using ICP-OES.

Figure 8

Photos of the mine-waste deposit from the 1907 flood in sections (a) Oh-1; (b) Oh-2; and (c) Oh-4. The top and bottom of the mine-waste unit in each section is indicated with arrows. Note the distinctive yellow colouring of the mine waste (cf. AJHR, 1910).

Figure 9

Stratigraphy, sedimentology, and geochemistry results for floodplain profiles Wai-1 to Wai-4. The locations of these sections are shown on Fig. 5. Concentrations of Pb, As, Zn, Cu and Fe were determined using ICP-OES.
Photo of reduced mine waste (grey sand) at the base of floodplain section Oh-5.

Characterisation of the floodplain topography of the Ohinemuri and Waihou rivers, expressed as cross sections taken at each of the sampling sites down the length of the river. (A) Map of the study area, showing the location of cross sections. Cross sections 1 to 7 correspond to the numbered lines on this map. The left of each cross section corresponds with the true-left of the floodplain. Flow of both rivers is from south to north. Elevation data for the cross sections is derived from contour data made available by Waikato Regional Council.

Downstream trends in: (A) concentrations of Pb, As, and Cu in mine-waste flood deposits; (B) the thickness of the mine waste flood deposits; (C) the mean grain size of the mine-waste flood deposits; and (D) the post-1907 sedimentation rate.

Summary of the geochemical analyses performed on each of the sedimentary samples presented in the current study.

Results of radiocarbon age determinations of organic material recovered in cores G and M.
Geochemical results from bulk sediment samples Ke-1 to -4 and Wi-1.

Concentrations of As, Ag, Hg and Pb, were measured using ICP MS,

concentrations of Cu and Zn were determined using AAS.

Table 4

Volumes of mine waste estimated for the Ohinemuri River valley. Polygons (areas where mine waste was deposited) were derived from maps presented in AJHR (1910); polygon numbers correspond to labels on Supp. Fig. 1. Mine waste thickness at the channel edge is derived from observations of this study (see Figs. 7 and 9). The sum of the final column is 1,129,332 m3 of mine waste.

Table 5

Recommended interim guidelines (ISQG) for concentrations of contaminant metals and metalloids for aquatic sediments in New Zealand. From ANZECC and ARMCANZ (2000).

Table 6

Average concentrations and ranges (in brackets) of As, Cu, Pb, and Zn in mining-affected floodplains in New Zealand (Ohinemuri, this study) and internationally.

Supplementary Figure 1

Map of the study area around the township of Paeroa and the Ohinemuri-Waihou confluence. Shown is the area of silt coverage mapped in 1910. The area downstream between Wai-3 and Wai-4 has been extended as mine waste was located at Wai-4 (cf. Fig. 5). The area of mine waste has also been extended upstream of Oh-2 as mine was located at Oh-1. Descriptions of the mine waste thickness are taken from AHJR (1910). Numbers in italics are the thicknesses of
mine waste used for calculating the legacy volume of mine waste present in the
floodplain. Numbers in brackets are polygon numbers in the range 1-18 used to
estimate the volume of mine waste presently stored in the floodplain, and
correspond with polygon numbers presented in Table 4.

Supplementary Table 1

Results of correlation of Niton XRF results of As, Pb with results from ICP MS
analysis, and correlations of Cu and Zn concentrations from Niton XRF with results
of Cu and Zn measured by AAS.
Table 1: Summary of the geochemical analyses performed on each of the sedimentary samples presented in the current study.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Type of sediments</th>
<th>Analysed elements</th>
<th>Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>M, G</td>
<td>Percussion cores from floodplains</td>
<td>As, Cu, Fe, Pb, Zn</td>
<td>Handheld XRF Niton Aberystwyth University</td>
</tr>
<tr>
<td>Oh-1 to -5 Wai-1 to -4</td>
<td>Bulk samples from floodplain profiles in exposed riverbanks</td>
<td>As, Cu, Fe, Pb, Zn</td>
<td>ICP-OES University of London</td>
</tr>
<tr>
<td>Wi-1 Ke-1 to -4</td>
<td>Bulk sediments from overbank and channel sediments</td>
<td>Ag, As, Hg, Pb</td>
<td>ICP-MS Aberystwyth University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cu, Zn</td>
<td>AAS Aberystwyth University</td>
</tr>
</tbody>
</table>
Table 2: Results of radiocarbon age determinations of organic material recovered in cores G and M.

<table>
<thead>
<tr>
<th>Core</th>
<th>Depth (m)</th>
<th>Material dated</th>
<th>Lab number</th>
<th>Conventional radiocarbon age (yr BP)</th>
<th>2-σ Sidereal age (cal BP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>1.0</td>
<td>Wood</td>
<td>Wk-39424</td>
<td>5178±26</td>
<td>5870±120</td>
</tr>
<tr>
<td>M</td>
<td>1.6</td>
<td>Rootlets</td>
<td>Wk-39428</td>
<td>7940±30</td>
<td>8790±190</td>
</tr>
</tbody>
</table>
Table 3: Geochemical results from bulk sediment samples Ke-1 to Ke-4 and Wi-1. Concentrations of As, Ag, Hg and Pb, were measured using ICP MS, concentrations of Cu and Zn were determined using AAS.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample type</th>
<th>Pb (mg kg$^{-1}$)</th>
<th>Zn (mg kg$^{-1}$)</th>
<th>As (mg kg$^{-1}$)</th>
<th>Cu (mg kg$^{-1}$)</th>
<th>Hg (mg kg$^{-1}$)</th>
<th>Ag (mg kg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ke-1</td>
<td>Channel sediment</td>
<td>34</td>
<td>69</td>
<td>20</td>
<td>24</td>
<td>0.44</td>
<td>0.40</td>
</tr>
<tr>
<td>Ke-2</td>
<td>Channel sediment</td>
<td>29</td>
<td>56</td>
<td>40</td>
<td>23</td>
<td>0.45</td>
<td>0.33</td>
</tr>
<tr>
<td>Ke-3</td>
<td>Channel sediment</td>
<td>111</td>
<td>138</td>
<td>29</td>
<td>31</td>
<td>0.50</td>
<td>2.93</td>
</tr>
<tr>
<td>Ke-4</td>
<td>Channel sediment</td>
<td>20</td>
<td>68</td>
<td>25</td>
<td>22</td>
<td>0.33</td>
<td>0.35</td>
</tr>
<tr>
<td>Wi-1</td>
<td>Overbank silts</td>
<td>104</td>
<td>323</td>
<td>16</td>
<td>24</td>
<td>0.44</td>
<td>2.51</td>
</tr>
</tbody>
</table>
Table 4: Volumes of mine waste estimated for the Ohinemuri River valley. Polygons (areas where mine waste was deposited) were derived from maps presented in AJHR (1910); polygon numbers correspond to labels on Supp. Fig. 1. Mine waste thickness at the channel edge is derived from observations of this study (see Figs. 7 and 9). The sum of the final column is 1,129,332 m3 of mine waste.

<table>
<thead>
<tr>
<th>Polygon</th>
<th>Area (m2)</th>
<th>Description of mine-waste deposit from AJHR (1910)</th>
<th>Thickness of mine waste at channel edge (m)</th>
<th>Source of mine waste thickness estimate</th>
<th>Maximum calculated volume of mine waste (area \times thickness), assuming no decrease in thickness with distance from the channel (m3)</th>
<th>Calculated volume of mine waste, assuming thickness decreases to 30% at distal margin of polygon ([area \times thickness] \times 0.65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10,487</td>
<td>-</td>
<td>0.20</td>
<td>Oh-1</td>
<td>2097</td>
<td>1363</td>
</tr>
<tr>
<td>2</td>
<td>74,047</td>
<td>-</td>
<td>0.20</td>
<td>Oh-1</td>
<td>14,809</td>
<td>9626</td>
</tr>
<tr>
<td>3</td>
<td>41,692</td>
<td>-</td>
<td>0.20</td>
<td>Oh-1</td>
<td>8338</td>
<td>5420</td>
</tr>
<tr>
<td>4</td>
<td>55,679</td>
<td>-</td>
<td>0.50</td>
<td>Oh-2</td>
<td>27,839</td>
<td>18,095</td>
</tr>
<tr>
<td>5</td>
<td>655,680</td>
<td>Heavy</td>
<td>0.50</td>
<td>Oh-2</td>
<td>327,840</td>
<td>213,096</td>
</tr>
<tr>
<td>6</td>
<td>590,176</td>
<td>Heavy</td>
<td>0.50</td>
<td>Oh-2</td>
<td>295,088</td>
<td>191,807</td>
</tr>
<tr>
<td>7</td>
<td>43,624</td>
<td>-</td>
<td>0.18</td>
<td>Core M</td>
<td>7852</td>
<td>5104</td>
</tr>
<tr>
<td>8</td>
<td>25,790</td>
<td>-</td>
<td>0.18</td>
<td>Core M</td>
<td>4642</td>
<td>3017</td>
</tr>
<tr>
<td>9</td>
<td>474,510</td>
<td>Heavy</td>
<td>0.30</td>
<td>Described as a ‘heavy silt deposit’; presumed to be an intermediate thickness between Core M and Oh-2</td>
<td>142,353</td>
<td>92,529</td>
</tr>
<tr>
<td>10</td>
<td>410,583</td>
<td>-</td>
<td>0.18</td>
<td>Core M</td>
<td>73,905</td>
<td>48,038</td>
</tr>
<tr>
<td>11</td>
<td>2,165,751</td>
<td>Light</td>
<td>0.18</td>
<td>Core M</td>
<td>389,835</td>
<td>253,393</td>
</tr>
<tr>
<td>12</td>
<td>56,050</td>
<td>-</td>
<td>0.22</td>
<td>Oh-3</td>
<td>12,331</td>
<td>8015</td>
</tr>
<tr>
<td>13</td>
<td>118,924</td>
<td>-</td>
<td>0.50</td>
<td>Oh-5</td>
<td>59,462</td>
<td>38,650</td>
</tr>
<tr>
<td>14</td>
<td>661,624</td>
<td>Light</td>
<td>0.15</td>
<td>Described as a ‘light silt deposit’, presumed to be similar thickness to Core M and Wai-4</td>
<td>99,244</td>
<td>64,509</td>
</tr>
<tr>
<td>15</td>
<td>254,472</td>
<td>Heavy</td>
<td>0.50</td>
<td>Oh-5</td>
<td>127,236</td>
<td>82,703</td>
</tr>
<tr>
<td>16</td>
<td>293,703</td>
<td>-</td>
<td>0.15</td>
<td>Wai-4</td>
<td>44,056</td>
<td>28,636</td>
</tr>
<tr>
<td>17</td>
<td>439,325</td>
<td>-</td>
<td>0.15</td>
<td>Described as a ‘light silt deposit’, presumed to be similar thickness to Core M and Wai-4</td>
<td>65,899</td>
<td>42,834</td>
</tr>
<tr>
<td>18</td>
<td>230,743</td>
<td>-</td>
<td>0.15</td>
<td>Wai-4</td>
<td>34,611</td>
<td>22,497</td>
</tr>
</tbody>
</table>
Table 5: Recommended interim sediment quality guidelines (ISQG) for concentrations of contaminant metals and metalloids for aquatic sediments in New Zealand. From ANZECC and ARMCANZ (2000).

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>ISQG-low trigger value (mg kg(^{-1}) dry wt)</th>
<th>ISQG-high trigger value (mg kg(^{-1}) dry wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>50.00</td>
<td>220.00</td>
</tr>
<tr>
<td>Zn</td>
<td>200.00</td>
<td>410.00</td>
</tr>
<tr>
<td>Cu</td>
<td>65.00</td>
<td>270.00</td>
</tr>
<tr>
<td>Cr</td>
<td>80.00</td>
<td>370.00</td>
</tr>
<tr>
<td>Ni</td>
<td>21.00</td>
<td>52.00</td>
</tr>
<tr>
<td>Cd</td>
<td>1.50</td>
<td>10.00</td>
</tr>
<tr>
<td>Sb</td>
<td>2.00</td>
<td>25.00</td>
</tr>
<tr>
<td>Ag</td>
<td>1.00</td>
<td>3.70</td>
</tr>
<tr>
<td>Hg</td>
<td>0.15</td>
<td>1.00</td>
</tr>
<tr>
<td>As</td>
<td>20.00</td>
<td>70.00</td>
</tr>
</tbody>
</table>
Table 46: Average concentrations and ranges (in brackets) of As, Cu, Pb, and Zn in mining-affected floodplains in New Zealand (Ohinemuri, this study) and internationally.

<table>
<thead>
<tr>
<th>Area</th>
<th>As (mg/kg)</th>
<th>Cu (mg/kg)</th>
<th>Pb (mg/kg)</th>
<th>Zn (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohinemuri (this study)</td>
<td>30</td>
<td>43</td>
<td>230</td>
<td>140</td>
</tr>
<tr>
<td>(n=34)</td>
<td>(2-73)</td>
<td>(18-130)</td>
<td>(47-570)</td>
<td>(30-910)</td>
</tr>
<tr>
<td>Upper Río Pilcomayo, Bolivia (n=7)^a</td>
<td>2500</td>
<td>490</td>
<td>960</td>
<td>8200</td>
</tr>
<tr>
<td></td>
<td>(210-7200)</td>
<td>(88-1400)</td>
<td>(230-1700)</td>
<td>(1800-10000)</td>
</tr>
<tr>
<td>Mining- and industrially-contaminated sites in</td>
<td>16</td>
<td>25</td>
<td>89</td>
<td>716</td>
</tr>
<tr>
<td>Belgium, Germany and the Netherlands (n=34)^b</td>
<td>(<5-69)</td>
<td>(<10-736)</td>
<td>(<10-1600)</td>
<td>(378-2477)</td>
</tr>
<tr>
<td>River Someş, Romania</td>
<td>102</td>
<td>110</td>
<td>439</td>
<td>368</td>
</tr>
<tr>
<td>(n=8)</td>
<td>(9-300)</td>
<td>(11-880)</td>
<td>(18-2760)</td>
<td>(54-9200)</td>
</tr>
<tr>
<td>Aznalcóllar, Spain (n=93)^d</td>
<td>27-1200</td>
<td>17-730</td>
<td>50-2700</td>
<td>140-4600</td>
</tr>
<tr>
<td></td>
<td>(110-750)</td>
<td>(75-1500)</td>
<td>(490-3100)</td>
<td>(<20-120)</td>
</tr>
<tr>
<td>Río Tinto, Spain (n=14)^c</td>
<td>370</td>
<td>300</td>
<td>2800</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>(224-15800)</td>
<td>(75-8052)</td>
<td>(50-3885)</td>
<td>(4360-38000)</td>
</tr>
<tr>
<td>River Nent, UK (n=24)^f</td>
<td>nr</td>
<td>nr</td>
<td>5262</td>
<td>16320</td>
</tr>
<tr>
<td></td>
<td>(224-15800)</td>
<td>(75-8052)</td>
<td>(50-3885)</td>
<td>(4360-38000)</td>
</tr>
<tr>
<td>River Swale, UK (n=297)^g</td>
<td>nr</td>
<td>nr</td>
<td>(75-8052)</td>
<td>(50-3885)</td>
</tr>
<tr>
<td>River Wear, UK (n=107)^h</td>
<td>(<10-65)</td>
<td>(<10-340)</td>
<td>20-15000</td>
<td>40-1500</td>
</tr>
<tr>
<td>River Ystwyth, UK (n=41)^i</td>
<td>nr</td>
<td>nr</td>
<td>1791</td>
<td>533</td>
</tr>
<tr>
<td></td>
<td>(73-4646)</td>
<td>(73-4646)</td>
<td>(123-1543)</td>
<td></td>
</tr>
</tbody>
</table>

nr: not reported; ^a Hudson-Edwards et al., 2001; ^b De Vos et al., 1996; ^c Macklin et al., 2003; ^d Hudson-Edwards et al., 2003; ^e Hudson-Edwards et al., 1999; ^f Macklin, 1986; ^g Brewer et al., 2005; ^h Lord and Morgan, 2003; ^i Lewin et al., 1983.
Supplementary Table 1: Results of correlation of Niton XRF results of As, Pb with results from ICP MS analysis, and correlations of Cu and Zn concentrations from Niton XRF with results of Cu and Zn measured by AAS.

<table>
<thead>
<tr>
<th>Measurement comparison</th>
<th>Measured element</th>
<th>Correlation equations</th>
<th>Number of samples</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>XRF with ICP</td>
<td>As</td>
<td>$y = 1.0102x$</td>
<td>11</td>
<td>0.966</td>
</tr>
<tr>
<td></td>
<td>Pb</td>
<td>$y = 1.2309x$</td>
<td>11</td>
<td>0.996</td>
</tr>
<tr>
<td>XRF with AAS</td>
<td>Cu</td>
<td>$y = 0.102x + 32.73$</td>
<td>8</td>
<td>0.402</td>
</tr>
<tr>
<td></td>
<td>Zn</td>
<td>$y = 0.8424x$</td>
<td>10</td>
<td>0.705</td>
</tr>
</tbody>
</table>
Figure 1 (Color)
Figure 5 (Color)

Proportion of clay, silt, and sand

8790±190 cal yr BP

Depth (cm)

Pumicious tephra
Sand
Silty sand
Silt
Clayey silt
Clay

Pb (ppm)
Zn (ppm)
Fe (ppm)
As (ppm)
Cu (ppm)
Figure 6 (Color)

Proportion of clay, silt, and sand

Depth (cm)

5870±120 cal yr BP

Composition:
- Mine waste yellow silt
- Pumiceous tephra
- Sand
- Silty sand
- Silt
- Clayey silt
- Clay

Elements:
- Pb (ppm)
- Zn (ppm)
- Fe (ppm)
- As (ppm)
- Cu (ppm)
Figure 12 (Color)

A. Geochemical concentration (ppm) vs. distance downstream (km)
- Pb: $r = 0.13$, $r^2 = 0.02$
- As: $r = -0.37$, $r^2 = 0.14$
- Cu: $r = 0.57$, $r^2 = 0.33$

B. Thickness of mine waste deposit (cm) vs. distance downstream (km)
- Oh-2: $r = -0.18$, $r^2 = 0.03$
- Oh-5: $r = 0.70$, $r^2 = 0.49$

C. Mean grain size of mine waste deposit (μm) vs. distance downstream (km)
- Post-1907 sedimentation rate (mm yr$^{-1}$) vs. distance downstream (km)
- $r = -0.96$, $r^2 = 0.92$