Hypoxia and hypothermia as rival agents of selection driving the evolution of viviparity in lizards

Pincheira-Donoso, Daniel and Jara, Manuel and Reaney, Ashley and García-Roa, Roberto and Saldarriaga-Córdoba, Mónica and Hodgson, Dave J. (2017) Hypoxia and hypothermia as rival agents of selection driving the evolution of viviparity in lizards. Global Ecology and Biogeography, 26 (11). pp. 1238-1246. ISSN 1466-822X

Documents
Main TEXT_PincheiraDonosoetal_FINAL_GEB2017.docx
[img]
[Download]
[img] Microsoft Word
Main TEXT_PincheiraDonosoetal_FINAL_GEB2017.docx - Whole Document

118kB
Item Type:Article
Item Status:Live Archive

Abstract

Aim: The evolution of key innovations promotes adaptive radiations by opening access to novel ecological opportunity. The acquisition of viviparity (live-bearing reproduction) has emerged as one such innovation explaining reptile proliferations into extreme climates. By evolving viviparity, females provide embryos with internally stable environments to complete development. The classical hypothesis suggests that natural selection for viviparity arises from low temperatures in cold-climates, which promote prolonged egg retention in the mother’s body. An alternative hypothesis proposes that declines in atmospheric oxygen at high elevations create natural selection for embryo retention to provide them with optimal oxygen levels during development. However, although experimental studies support the negative effects of low oxygen on egg development, this ‘hypoxia’ hypothesis has never been tested quantitatively. Here, we compete the hypoxia hypothesis against the ‘cold-climate’ hypothesis, using a highly-diverse lizard genus.
Location: South America
Major taxa: Liolaemus lizards.
Methods: We employ a multivariate dataset covering 121-species varying extensively in geographic and climatic distribution (including extreme thermal and oxygen gradients), and parity mode. Based on a new molecular phylogeny for the genus, we use phylogenetic logistic regressions to generate a range of models ranking environmental factors as a function of their effects on parity mode transitions.
Results: Elevation and oxygen declines correlate nearly perfectly, and both were identified as the dominant predictors of oviparity-to-viviparity transitions, while the role for temperature (dominated by the coldest winter temperatures and daily fluctuations) is significant but secondary. Overall, we show that oxygen-deprivation and low temperatures both play a role in the evolution of viviparity.
Main conclusions: Our findings support the role for selection from declines in oxygen concentrations as the primary driver behind viviparity. However, selection arising from cold temperatures and from reduced fluctuations in daily temperatures contribute to the evolution of these transitions by creating multivariate selection on parity mode.

Keywords:Life history evolution, macroecology, viviparity, reproductive modes, hypoxia, homeostasis, squamates, Liolaemus
Subjects:C Biological Sciences > C182 Evolution
C Biological Sciences > C150 Environmental Biology
Divisions:College of Science > School of Life Sciences
Related URLs:
ID Code:28828
Deposited On:22 Sep 2017 15:06

Repository Staff Only: item control page