Binary histogram based split/merge object detection using FPGAs

Appiah, Kofi and Meng, Hongying and Hunter, Andrew and Dickinson, Patrick (2010) Binary histogram based split/merge object detection using FPGAs. In: 6th Workshop on Embedded Computer Vision, 13 - 18 June 2010, San Francisco, CA. USA.

This is the latest version of this item.

Documents
ECVW_11.pdf
[img]
[Download]
[img]
Preview
PDF
ECVW_11.pdf - Whole Document

233Kb

Official URL: http://dx.doi.org/10.1109/CVPRW.2010.5543760

Abstract

Tracking of objects using colour histograms has proven successful in various visual surveillance systems. Such systems rely heavily on similarity matrices to compare the appearance of targets in successive frames. The computational cost of the similarity matrix is increased if proximate objects merge into a single object or a single object fragments into two or more parts. This paper presents a method of reducing this computational cost with the use of a reconfigurable computing architecture. Colour histogram data of moving targets are used to generate binary signatures for the detection of merged or fragmented objects. The main contribution in this paper is how binary histogram data is generated and used to detect split/merge object with the use of logical operations native to the hardware architecture used for its implementation. The results show a 10 fold improvement in processing speed over the microprocessor based implementation, and that it is also capable of detecting split/merge objects efficiently.

Item Type:Conference or Workshop Item (Paper)
Keywords:FPGA, Split and Merge, Tracking
Subjects:G Mathematical and Computer Sciences > G740 Computer Vision
Divisions:College of Science > School of Computer Science
ID Code:2797
Deposited By:INVALID USER
Deposited On:07 Jul 2010 13:07
Last Modified:08 Jul 2013 16:24

Available Versions of this Item

  • Binary histogram based split/merge object detection using FPGAs. (deposited 07 Jul 2010 13:07) [Currently Displayed]

Repository Staff Only: item control page