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Abstract—It has been established that a class of bandpass 

sigma delta modulators (SDMs) may exhibit state space dynamics 
which are represented by elliptical or fractal patterns confined 
within trapezoidal regions when the system matrices are 
marginally stable. In this paper, it is found that fractal or 
irregular chaotic patterns may also be exhibited in the phase 
plane when the system matrices are strictly stable. 
 

Index Terms—Fractals, chaos, bandpass sigma delta 
modulators, stable system matrix. 

I. INTRODUCTION 
ANDPASS sigma delta modulators (SDMs) have many 
industrial and engineering applications because many 

systems are required to perform analog to digital conversions 
on bandpass signals [1]. By using bandpass SDMs, simple and 
relatively low precision analog components could achieve the 
objectives. Because of this advantage, this area draws much 
attention from the researchers in the community. 
Consequently, some methods for the analysis [6], [7] and 
design of bandpass SDMs have been proposed [2]-[5]. 

Since the quantizer in the feedback loop of bandpass SDMs 
introduces nonlinearities, limit cycles [6] and chaos [7] may 
occur. Some researchers utilize the nonlinear behavior to 
suppress unwanted tones from the quantizers [9]-[11]. The 
most common existing method is to place some unstable poles 
in the system matrices, so that chaotic behaviors will be 
exhibited in the systems, and the rich frequency spectra of 
these chaotic output signals break down the dominant 
oscillations at the outputs. However, by placing some unstable 
poles in the system matrices, the stability of the systems is 
degraded. 

In the practical situation, there are leakages on the 
integrators [8]. This originates from the internal resistances of 
the components. Even though the leakages may sometimes be 
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negligible, engineers and circuit designers may impose 

leakage on the integrators so as to improve the stability of the 
overall systems. Therefore, the eigenvalues of the system 
matrices are strictly inside the unit circle, and the system 
matrices are actually strictly stable. 

Although there are some analytical results on the bandpass 
SDMs [7], most analysis is based on marginally stable system 
matrices only. For the bandpass SDMs with strictly stable 
system matrices, the existing results are primarily concerned 
with limit cycles, but not with fractal or irregular chaotic 
behavior. In this paper, we show that fractal or irregular 
chaotic behavior may also occur. 

The organization of the paper is as follows. The analytical 
and simulation results of bandpass SDMs with strictly stable 
system matrices are given in Section II. Discussion and 
conclusion are given in Section III. 

II. ANALYTICAL AND SIMULATION RESULTS 
The bandpass SDMs in [12] with leakages can be modeled 

as follows: 
( ) ( ) ( ) ( )( )kkkk suBAxx −+=+1  for 0≥k , (1) 

where ( ) ( ) ( )[ ]Tkxkxk 21≡x  is the state vector of the system, 

( ) ( ) ( )[ ]Tkukuk 12 −−≡u  is a vector containing the past two 
consecutive points from the input signal ( )ku , 
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( ) ( )( ) ( )( )[ ]TkxQkxQk 21≡s  for 0≥k , (4) 

in which the superscript T  denotes the transpose operator, 
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{ }ππθ ,0,−∉  and 10 << r . As opposed to standard lowpass 
SDM systems, bandpass SDMs are designed to operate on 
high-frequency narrowband signals by shaping the noise from 
some frequency 

0f  [7], where 
π

θ
20

sff = , in which 
sf  denotes 

the sampling frequency. At the desired frequency 0f , it has 
noise transfer function zero and signal transfer function 1 [7]. 
When { }ππθ ,0,−∈ , the system is either a lowpass SDM or a 
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highpass SDM, which is out of the scope of the paper. The 
leakage of the system depends on the values of r . If r  is 
closer to 0, then the poles are closer to the origin and the 
leakage is more serious. If r  is closer to 1, then the poles are 
closer to the unit circle and the leakage is less significant. For 
an ideal lossless bandpass SDMs, 1=r , the system reduces to 
that described in [12], and the system matrices are marginally 
stable. Since 

( ) [ ] [ ] [ ] [ ]{ }TTTTk 11,11,11,11 −−−−∈s  for 0≥k , (6) 
the value of ( )ks  can be viewed as symbols, and ( )ks  is called 
a symbolic sequence. 

In this paper, we only consider the cases when ( )kx  and 
( )ku  are real signals, that is ( ) 2ℜ∈kx  and ( ) ℜ∈ku . We also 

assume that ( )ku  is a constant input, that is ( ) uu =k  for 0≥k . 
A.  Limit cycle behaviors 

Define 
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Since { }ππθ ,0,−∉ , 1−T  exists. As A  is a full rank matrix 
because 0≠r , A  can be decomposed via eigen 
decomposition. That is: 

1−=TDTA . (9) 
Let M  be the period of the steady state of the output 
sequences (if it exists), that is 

( ) ( )ikiMk +=++ 00 ss  0≥∀i , (10) 

in which +∈ZM  and { }00 U+∈ Zk . Define 
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We have the following lemma. 
Lemma 1 

The following statements are equivalent: 
i) ( ) ( )ikiMk +=++ 00 ss  0≥∀i . 
ii) ( ) ∗

+∞→
=++ ik

ikkM xx 0lim  for 1,,1,0 −= Mi L . 

iii) ( ) ( ) { }{ and ,0such that  0:00 01 ≥∀∈∃≡Ξ∈ + kZk Uxx  

( )( ) ( )}∗=++−= iQikkMQMi xx 0  ,1,,1,0 L . 
Proof: 

For i) implies ii), from equation (1), we have: 
+∈∀ Ζ, Mp  and 0≥∀k , 
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From equation (9) and (i), we have: 
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Hence, we have: 
( ) ∗

+∞→
=+ 00lim xx pMk

p
. (15) 

By substituting equation (15) into equation (1), the result 
follows directly. 

For ii) implies i), since 
( ) ∗

+∞→
=++ ik

ikkM xx 0lim  for 1,,1,0 −= Mi L , (16) 

then 01 ≥∃k  such that 
( )( ) ( )∗=++ iQikkMQ xx 0  for 1kk ≥  and 1,,1,0 −= Mi L . (17) 

Hence, the result follows directly. 
For ii) implies iii), since 

( ) ∗

+∞→
=++ ik

ikkM xx 0lim  for 1,,1,0 −= Mi L , (18) 

then 01 ≥∃k  such that 
( )( ) ( )∗=++ iQikkMQ xx 0  for 0≥k and for 1,,1,0 −= Mi L .(19) 

Hence, the result follows directly. 
For iii) implies i), since 

( )( ) ( )∗=++ iQikkMQ xx 0
 for 0≥k  and for 1,,1,0 −= Mi L ,(20) 

the result follows directly. 
This completes the whole proof of the lemma.  

Lemma 1 associates the steady state of periodic output with 
a specific set of initial conditions and a corresponding 
dynamical behavior of the system. According to Lemma 1, we 
can easily see that the trajectories will converge to the set of 
fixed points { }∗

−
∗∗

110 ,,, Mxxx L , and the periodicity of the steady 
states of the output sequence is equal to the number of fixed 
points on the phase plane. That implies that all the fixed points 
(more than or equal to 2) cannot be in the same quadrant. For 
example, if 2=M , then there are two fixed points on the 
phase plane and these two fixed points are located in different 
quadrants. 

The significance of Lemma 1 is that it provides useful 
information for estimating the periodicity of the steady state of 
output sequences via the phase portrait. Moreover, Lemma 1 
provides useful information to the SDM designers to avoid 
limit cycle behavior. 

It is worth noting that although the state vector is 
converging to a periodic orbit, it never reaches these periodic 
points. That means, the state vector is aperiodic even though 
the output sequence is eventually periodic. This result is 
different from the case when 1=r  and θ  is a rational multiple 
of π . 

Moreover, although ∗
ix , for 1,,2,1 −= Mi L , depends on 

( )is , for 1,,2,1 −= Mi L , it does not depend on ( )0x  directly. 
That is, the fixed points leading to a given symbol sequence 
are not directly depended on the initial conditions. 

When 1=M , the output sequence will become constant and 
there is only one single fixed point on the phase portrait. The 
trajectory will converge to this fixed point, denoted as ∗x . The 
significance of this result is that it allows SDM designers to 
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avoid fixed point behavior. 
It is worth noting that the state vectors of the corresponding 

linear system will converge to ( ) BuAI 1−− , which is not the 
same as that of ∗x . Comparing these two values, there are DC 
shifts and the DC shifts are exactly dropped at the output 
sequences, that is: 

( ) ( )
0

11
kBsAIxBuAI −∗− −=−− , (21) 

in which 
( )

0kk ss =  for 0kk ≥ . (22) 

In addition, this phenomenon is quite different from the case 
of lowpass SDMs. In such a situation, the average output 
sequence will approximate the input values even though limit 
cycle behavior occurs. 

Although the nonlinearity is always activated, the rate of 
convergence only depends on r  when the output sequence 
becomes steady. This is because the DC terms do not affect 
the rate of convergence. However, if we look at the transient 
response of the system, that is, the time duration when the 
output sequence is not constant, the system dynamics could be 
very complex. 

Figure 1 shows the response of the state variables of a 
bandpass SDM with 

9999.0=r , ( )158532.0cos 1 −= −θ , [ ]T113.0−=u  and ( ) [ ]T5.000 =x .(23) 
The state variables will converge to the same fixed value and 
the output sequences will become constant for 2154≥k . 

Figure 2 shows the state trajectory of a bandpass SDM with 
99.0=r , ( )158532.0cos 1 −= −θ , [ ]T113.0−=u  and ( ) [ ]T5.000 =x . (24) 

The state trajectory will converge to two fixed points and the 
output sequences are periodic with period 2  for 3≥k . 

Although Lemma 1 gives the necessary and sufficient 
conditions for the occurrence of limit cycles, it is not easy to 
check whether a periodic sequence is admissible or not. To 
address this issue, define 

( ) ( ) ( )[ ]TTTT Mkkk 11 000 −++≡ ssss L , (25) 
and 
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Lemma 2 
If the periodic sequence is admissible, then 
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Proof: 
From Lemma 1, if the periodic sequence is admissible, then 

the state vectors will converge to 
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Hence, equation (27) is satisfied and this completes the proof.  
The importance of Lemma 2 is that it provides information 

to check whether a periodic sequence is admissible or not, and 

hence it can conclude whether limit cycles occur or not from 
the filter parameters. 
B.  Fractal or irregular chaotic behaviors 

Equation (27) can be expressed as follows: 
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for 1,,1,0 −= Mi L . Since 

( ) [ ] [ ] [ ] [ ]{ }TTTTk 11,11,11,11 −−−−∈s  for 0≥k , it can be 
checked that Lemma 2 is not universal satisfied for all filter 
parameters. That means, there exists some values of ( )1,0∈r  
and { }ππθ ,0,−∉  such that equation (29) is not satisfied. In 
this case, the output sequence is aperiodic and the SDM 
exhibits neither convergent nor limit cycle behaviors at the 
steady state. Hence, 

Ø\ 1
2

2 ≠Ξℜ≡Ξ , (30) 
where Ø denotes the empty set. That means, there exists some 
initial conditions that the SDM may exhibit either elliptical 
fractal or irregular chaotic patterns. 

Figures 3a-3c show the state trajectories of a bandpass 
SDM with filter parameters 6101 −−=r  and 

( )158532.0cos 1 −= −θ , input step size [ ]T113.0−=u  and 
initial conditions ( ) [ ]T5.000 =x , ( ) [ ]T000 =x  and 

( ) [ ]T010 =x , respectively. It can be seen from the figures 
that fractal patterns are exhibited on the phase plane and the 
trajectories neither converge to the boundaries of the 
trapezoids nor any fixed points in the phase portrait. 
Measurements of the fractal dimension are estimated at 1.78 
for the box counting dimension, 1.75 for the information 
dimension, and 1.72 for the correlation dimension for all these 
three initial conditions. Figures 3d-3f show the state 
trajectories of a bandpass SDM with filter parameters 

9999.0=r  and 01.0=θ , input step size [ ]T11
10
π

=u  and 

initial conditions ( ) [ ]T000 =x , ( ) [ ]T010 =x  and 

( ) [ ]T200 =x , respectively. It can be seen from the figures 
that the SDM exhibit irregular chaotic patterns on the phase 
plane. Compared to the fixed point case shown in Figure 1, 
the value or r  is the same. Figures 3g-3i show the state 
trajectories of a bandpass SDM with filter parameters 99.0=r  
and 0001.0=θ , input step size [ ]T114.0=u  and initial 
conditions ( ) [ ]T000 =x , ( ) [ ]T010 =x  and ( ) [ ]T100 =x , 
respectively. It can be seen from the figures that the SDM also 
exhibit irregular chaotic patterns on the phase plane. 
Compared to the limit cycle case shown in Figure 2, the value 
or r  is the same. Hence, even though the value of r  is close to 
the unit cycle, different behaviors may occur. 

Figure 4 show the spectra of the corresponding output 
sequences of the above examples. It can be seen from the 
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figures that there are no periodic impulses on the spectra, 
which illustrates that these SDMs do not exhibit limit cycle 
behavior and do not suffer from audio tonal effects. 

Although there are some spikes in some of spectra of output 
sequences of the above examples, by grouping those AC 
frequencies that producing spikes together to form a set, say 
℘, and defining the tonal suppressing ratio as follows: 

( )
[ ]

( ) ⎟
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⎟
⎟
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⎞
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∫

∫
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ω

ππω

ωω

ωω

dS

dS
TSR 2

\,

2

10log10 , (31) 

it can be checked easily that the tonal suppression ratios of the 
above SDMs are 15.9137dB, 19.2737dB, 17.7570dB, 
6.8905dB, 6.8985dB, 6.5896dB, 7.7505dB, 7.7816dB and 
7.7498dB, respectively 

Since all the simulations are carried out using MATLAB 
under a 64 bit computer. The numerical rounding error is 
insignificant compared to the distance between the poles of 
the system matrices and the unit circle. For example, the 
numerical error due to a 64 bit computer is 2 P

-64
P, while the 

distance between the poles of the system matrix and the unit 
circle is 10 P

-4
P for 9999.0=r , the ratio is just 5.42×10 P

-16
P. Hence, 

the effect of numerical rounding error can be regarded as 
insignificant. 

One possible implication of the results obtained in this 
paper is that it is not necessary to place unstable poles in the 
system matrices of bandpass SDMs to generate signals with 
rich frequency spectra in order to suppress unwanted tones 
from quantizers. It is shown in this paper that fractal or 
irregular chaotic signals can be generated via system matrices 
with strictly stable poles. Since the output sequences are 
aperiodic, which consist of rich frequency spectra, the 
unwanted tones could be suppressed using these aperiodic 
signals without the tradeoff of the stability of the systems. 

III. DISCUSSION AND CONCLUSION 
In this paper, we found that fractal or irregular chaotic 

patterns may be exhibited in the phase portrait even though 
the system matrices of bandpass SDMs are strictly stable. One 
implication of the results obtained in this paper is that we can 
generate signals with rich frequency spectra by using strictly 
stable system matrices and hence unwanted tones generated 
by the quantizers are suppressed. Thus limit cycles may be 
avoided without a tradeoff in the stability of the bandpass 
SDM. 
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Figure 1. The state variable ( )kx1 . 
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Figure 2. The phase portrait when 2=M . 

 
Figure 3. The phase portraits when output sequences are 

aperiodic. 

 
Figure 4. The corresponding frequency spectra of the output 

sequences. 


