THE $\alpha_2\delta$ SUBUNIT AND ABSENCE EPILEPSY: BEYOND CALCIUM CHANNELS?

Roberta Celli1*, Ines Santolini1*, Michela Guiducci2, Gilles Van Luijtelaar3, Pasquale Parisi2, Pasquale Striano4, Roberto Gradini1,5, Giuseppe Battaglia1, Richard T. Ngomba6, and Ferdinando Nicoletti1,7

1 I.R.C.C.S. Neuromed, Neuropharmacology Unit, Parco Tecnologico, Pozzilli, Isernia, Italy; Departments of 2Neurosciences, Mental Health and Sensory Organs, 5Experimental Medicine, and 7Physiology and Pharmacology, University Sapienza of Rome, Italy; 3Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; 4Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute, Genova, Italy; 6University of Lincoln, School of Pharmacy, Brayford Pool, Lincoln, LN6 7TS, UK.

*Co-first Authors

Address all correspondence to:

Ferdinando Nicoletti

Department of Physiology and Pharmacology, University Sapienza of Rome

IRCCS Neuromed Pozzilli, Italy

Tel. 39 0865 915211

Fax 39 0865 927575

e-mail: ferdinandonicoletti@hotmail.com
Abstract

The spike-wave discharges (SWDs) underlying absence seizures, are generated by hyperactivity of T-type voltage sensitive calcium channels (VSCCs) within the cortico-thalamo-cortical network, and the first-line drug used in the treatment of absence epilepsy inhibit T-type calcium channels. The $\alpha_2\delta$ subunit associates with all types of VSCCs, including T channels, and facilitates VSCC activation. Hence, one expects that drugs that bind to, and inhibit the $\alpha_2\delta$ subunit, e.g., gabapentin and pregabalin, are protective against absence epilepsy and that mice lacking the $\alpha_2\delta$ subunit are resistant to evoked absence seizures. In contrast, gabapentin and pregabalin are not clinically useful, and may even be detrimental, in the treatment of absence epilepsy, and *ducks* mice lacking the $\alpha_2\delta$ subunit *develop* absence seizures. This suggests that the $\alpha_2\delta$ subunit displays functions that go beyond the regulation of VSCCs, and that these functions are involved in the regulation of the cortico-thalamo-cortical network. This viewpoint critically examines the role of the $\alpha_2\delta$ subunit in the pathophysiology of absence seizures focusing on the potential role of the $\alpha_2\delta$ ligands, thrombospondins.
1. Role for the $\alpha_2\delta$ subunit in the modulation of VSCCs

VSCCs are formed by a multimolecular complex that includes the α_1, β_1, γ, and $\alpha_2\delta$ subunits. The α_1 subunit forms the ion channel and accounts for the basic properties of the channel. Based on the specific type of the α_1 subunit, VSCCs are classified into T-type (containing the $\alpha_1\text{G}$, $\alpha_1\text{H}$ and $\alpha_1\text{I}$ subunits), L-type (containing the $\alpha_1\text{C}$, $\alpha_1\text{D}$, $\alpha_1\text{S}$, and $\alpha_1\text{F}$ subunits), P/Q-type (containing the $\alpha_1\text{A}$ subunit), N-type (containing the $\alpha_1\text{B}$ subunit), and R-type (containing the $\alpha_1\text{E}$ subunit). There are four isoforms of the intracellular β subunit, and eight isoforms of the transmembrane γ subunits, which do not confer a particular specificity to the VSCCs, although the γ subunit is preferentially found in L-type channels of the skeletal muscle. The γ_2 subunit belongs to the group of transmembrane AMPA-receptor regulating proteins (TARPs) and is also named stargazin (reviewed by Tomita et al., 2007; Kato et al., 2010). Interestingly, *stargazer* mice lacking the γ_2 subunit show a severe neurological phenotype characterized by ataxia and absence epilepsy (Chen et al., 2000; Coombs and Cull-Candy, 2009; Menuz and Nicoll, 2008; Payne, 2008). Convincing evidence for the role of this protein in absence epilepsy comes from a study in adult GAERS (Genetic Absence Epilepsy Rats of Strasbourg), a well validated genetic absence model (Depaulis et al., 2016), in which it was found that elevated levels of stargazin in the cortical focal region (the somatosensory cortex) are associated with an increase in AMPA receptor proteins, GluA1 and GluA2. Elevated stargazin expression is not seen in the epileptic WAG/Rij rat (Wistar Albino Glaxo rats from Rijswijk), another well described genetic absence model endowed with face, construct, and pharmacological validity (Coenen and van Luijtelaar, 2003; Ngomba et al., 2011), suggesting that these changes are not likely a consequence of the hundreds daily SWDs, but it might be one of the many causal factors that play a role in the occurrence of absence seizures and or in epileptogenesis.

The transmembrane $\alpha_2\delta$ subunit is formed by the α_2 and δ subunits covalently linked by a disulfide bridge. Interestingly, the two subunits are generated by a single gene product, which is post-translationally cleaved. The α_2 subunit is glycosylated and interacts extracellularly with the α_1
The δ subunit has a single transmembrane domain and interacts with anchoring intracellular proteins via the C-terminal region (De Jongh et al., 1990). There are four isoforms of the α2δ subunit, produced by different genes. α2δ-1, originally described in the skeletal muscle, is ubiquitous; α2δ-2 and α2δ-3 are specifically found in neurons, whereas α2δ-4 is non-neuronal. The α2δ-1 protein is mainly present in axon terminals of excitatory neurons (Cole et al., 2005), whereas the α2δ-2 protein is expressed by cerebellar Purkinje cells (Barclay et al., 2001). The α2δ-3 protein is ubiquitously expressed in the forebrain (Cole et al., 2005).

The α2δ subunit regulates the activity of VSCCs by increasing current amplitude and causing a shift of voltage-dependent activation towards more hyperpolarized membrane potentials (Arikkath and Campbell, 2003; Dolphin, 2003; Cantí et al., 2005; Hendrich et al., 2008; Davies et al., 2010). In addition, the α2δ subunit regulates cellular trafficking and membrane expression of VSCCs. Accordingly, transient expression of the α2δ-1, -2, and -3 subunits in cultured hippocampal neurons targets P/Q channels in presynaptic terminals, thereby enhancing depolarization-evoked neurotransmitter release (Hoppe et al., 2012). This mechanism may be particularly relevant under pathological conditions, as suggested by the evidence that the α2δ-1 subunit translocates from neuronal cell bodies of dorsal root ganglia to axon terminals in the superficial layers of the dorsal horns of the spinal cord in a mouse model of neuropathic pain (Bauer et al., 2009).

2. The ambiguous role for the α2δ subunit in absence epilepsy

a) T-types VSCCs: the key molecular players in absence epilepsy

Absence seizures, the hallmark of absence epilepsy, are characterized by transient lapses of consciousness associated with bilateral symmetrical SWDs in the electroencephalogram (EEG). Absence seizures are generated by pathological oscillations in a cortico-thalamo-cortical network with a cortical origin; sleep spindles, another type of thalamo-cortical oscillations, are generated in the reticular thalamic nucleus, which is part of this network. This SWDs generating network includes interconnected pyramidal cells and GABA-ergic interneurons in the somatosensory cortex
(SSCtx), thalamo-cortical relay cells in the ventrobasal thalamic (VBT) nuclei, and the reticular thalamic nucleus (RTN) (reviewed by Blumenfeld, 2005; Avoli and Gloor, 1982; Meeren et al., 2005; van Luijtelaar et al., 2011). Highly excitable cells in deep layers of the somatosensory cortex send excitatory fibers to both the VBT and RTN, VBT neurons in their turn send excitatory fibers to the cortical pyramidal neurons and to the GABA-ergic RTN. RTN neurons project to the VBT, and are interconnected by gap junction (reviewed by Blumenfeld, 2005; Ngomba et al., 2011; Kohmann et al., 2016).

T-type VSCCs play a critical role in the generation of pathological oscillations underlying the electrophysiological correlate of absence seizures, the SWDs. These channels are activated at negative membrane potentials by the hyperpolarization-activated cyclic nucleotide-gated cationic I h pacemaker channels (HCN), and show a fast voltage-dependent inactivation with respect to other VSCCs. Owing to these peculiar functional properties, T channels are involved in the generation of repetitive firing in the thalamo-cortical network (Perez-Reyes, 2006; Talavera and Nilius, 2006). In the generation of SWDs, an increased excitatory drive from the somatosensory cortex to the RTN generates pathological bursts of RTN GABAergic projection neurons leading to GABA_B receptor-mediated inhibitory postsynaptic potentials (IPSPs) in VBT neurons. The resulting hyperpolarization enhances the activity of T-type VSCCs in VBT neurons producing the pathological 3-4 Hz oscillations that are typical of absence seizures in humans and 7-11 Hz in the genetic rat models (reviewed by Blumenfeld, 2005). Based on pioneering in vitro studies it is thought that the therapeutic activity of ethosuximide in absence epilepsy occurs via reducing the low-threshold Ca^{2+} current (I_T) in thalamocortical neurons (Coulter et al., 1989; Crunelli and Leresche, 2002). Although modern views emphasize a leading role for the cortex in the initiation of SWDs, the above described thalamic cellular properties, the anatomical projection and an intact cortico-thalamo-cortical network remain imperative for SWDs to occur.

There are three subtypes of T-type channels: Cav3.1, Cav3.2 and Cav3.3, containing the pore-forming α_1G, α_1H and α_1I subunits, respectively (Catterall et al., 2005). Cav3.2 and Cav3.3 channels
are expressed in RTN neurons and at least Cav3.3 has been implicated in the generation of RTN bursts. Cav3.1 channels are highly expressed in thalamocortical neurons, and all types of T channels are found in cortical neurons (Ernst et al., 2009; Cain and Snutch, 2010; Cheong and Shin, 2013).

b) The $\alpha_2\delta$ subunit associates with T channels and enhances T channel activity in heterologous expression systems

A few studies suggest that the $\alpha_2\delta$ subunit positively modulates the activity of T channels, although the physiological significance of the association between the $\alpha_2\delta$ subunit and T channels is still debated. Overexpression of $\alpha_2\delta$ influences the voltage-dependence of activation of native T-type channels in neuroblastoma/glioma cell lines (Wyatt et al., 1998). In Xenopus oocytes and mammalian cells the $\alpha_2\delta$ subunit enhances membrane expression and current amplitude of T channels (Dolphin et al., 1999; Dubel et al., 2004; Thompson et al., 2011). The $\alpha_2\delta$ subunit can also alter the activation and inactivation kinetics and gating properties of T channels (Hobom et al., 2000; Lacinová and Klugbauer, 2004).

c) The ducky mouse: a counterintuitive association between the lack of $\alpha_2\delta$ subunit and absence epilepsy

The association between the Cacna2d2 gene and childhood absence epilepsy suggests a role for the $\alpha_2\delta$ subunit in the pathophysiology of absence seizures (Chioza et al., 2009). Because the $\alpha_2\delta$ subunit facilitates the activity of T channels (see above) it is reasonable to predict that the lack of the $\alpha_2\delta$ subunit confers protection against absence seizures. In contrast, ducky mice, characterized by a spontaneous loss-of-function mutation of the Cacna2d2 gene, show generalized bilateral SWDs with a frequency of 5-7 Hz, and are considered as a genetic model for absence epilepsy (Barclay et al., 2001). Ducky mice also show severe ataxia, dyskinesias, dysgenesis of the cerebellum and other central nervous system (CNS) regions, axonal dystrophy and demyelination
Another spontaneous mutation of the Cacna2d2 gene (entla) encodes a mutant form of the α2δ-2 protein with an intact C-terminus. This mutation also causes generalized epilepsy (Brill et al., 2004), as does a targeted knockout of Cacna2d2 (Ivanov et al., 2004). The epileptic phenotype of mice lacking α2δ-2 is counterintuitive if one postulates that the α2δ subunit positively modulates T-type channels in thalamic neurons.

d) Lack of therapeutic activity of the two α2δ ligands, gabapentin and pregabalin, in absence epilepsy

Gabapentin and pregabalin have been developed for the treatment of focal epilepsy and are currently used in the treatment of neuropathic pain, migraine, anxiety disorders, and bipolar disorders (Bialer, 2012; Johannessen Landmark, 2008). Gabapentin and pregabalin bind selectively to α2δ-1 and α2δ-2 with nanomolar affinity (reviewed by Cantí et al., 2003; Klugbauer et al., 2003; Davies et al., 2007; Lana et al., 2014). An arginine residue in position 217 of α2δ-1 is part of the binding pocket, and binding of both [³H]gabapentin and [³H]pregabalin is largely reduced in the brain regions of transgenic mice with the α2δ-1 R217A mutation (Gee et al., 1996; Gong et al., 2001; Hendrich et al., 2008; reviewed by Dooley et al., 2007; Dolphin, 2012). Interaction of gabapentin and pregabalin with α2δ has two major effect on VSCCs: (i) a reduced membrane localization of α2δ and α1 subunits; and (ii) a reduced calcium channel current. It is generally believed that both effects contribute to the therapeutic action of gabapentin and pregabalin in focal epilepsy, neuropathic pain, and generalized anxiety disorder (Dooley et al., 2007, Stahl et al., 2013). By interacting with the α2δ subunit, gabapentin and pregabalin are expected to have therapeutic potential in absence epilepsy as a result of T channel inhibition. In contrast, clinical studies have consistently shown that the two drugs have no activity in absence epilepsy (Trudeau et al., 1996; Chadwick et al., 1996), and gabapentin can precipitate absence and myoclonic status epilepticus (Perrucca et al., 1998; Thomas et al., 2006). In animal studies, pregabalin did not affect the
incidence of SWDs in GAERS (Vartanian et al., 2006) and gabapentin had no effect on absence-like seizures in the lethargic mouse model of human absence epilepsy (Hosford and Wang, 1997).

3. Potential explanations for the ambiguous role of the α2δ subunit in absence epilepsy

a) Modulation of non-T type VSCCs

One possible explanation for the epileptic phenotype of ducky and entla mice is that the loss of α2δ subunit causes absence seizures by restraining the activity of high voltage-activated (HVA) Ca²⁺ channels (P/Q, N, L and R channels). Although T channels are one of the major players in the generation of pathological oscillations in the cortico-thalamo-cortical network, a large body of evidence suggests that HVA channels are also involved in the pathophysiology of absence seizures. Pharmacological activation of L-type HVA Ca²⁺ channels alters the firing rate of thalamocortical neurons (Kanyshkova et al., 2014), while the systemic administration of L-type Ca²⁺ channel blocker nimodipine increased SWDs, while a decrease was found after i.c.v. (intracerebroventricular) BAY K8644, a L-type Ca²⁺ channel opener. BAY K8644 was also able to antagonise the effects of nimodipine in rats with spontaneous occurring SWDs (van Luijtelaar et al., 1995; van Luijtelaar et al., 2000). R-type channels are also involved in the generation of oscillatory burst discharges in RTN neurons and absence epilepsy (Zaman et al., 2011). Preliminary evidence for a role in the R-type Ca²⁺ blocker was obtained after the administration of the conotoxin GVIA, it reduced SWDs (van Luijtelaar et al., 2000). Mutations of the Cacna1a gene encoding for the α1 subunit of P-type channels are associated with absence seizures in rodents and humans (Burgess and Noebels, 1999; Zamponi et al., 2010; Serikawa et al., 2015). It is possible that in ducky mice a reduced expression/activity of HVA VSCCs causes a compensatory increase in the activity of T-type channels resulting into absence seizures.

b) Beyond VSCCs: the α2δ subunit mediates the action of thrombospondins in the CNS
The $\alpha_2\delta$ subunit is the receptor for a class of proteins, called thrombospondins (TSPs), which were first isolated from platelets stimulated with thrombin and show a widespread distribution in various organs, including the CNS. TSPs are a large oligomeric extracellular matrix (ECM) proteins, found in vertebrates and lower metazoa (Adams, 2001; Bentley and Adams, 2010; Mosher and Adams, 2012). The human TSP protein family consists of five members (TSP-1, TSP-2, TSP-3, TSP-4, and TSP-5, or COMP, cartilage oligomeric matrix protein) which are subdivided into two groups (Adams, 2001; Adams and Lawler, 2004; Adams and Lawler, 2011) on the basis of their oligomerization state and domain structure. Subgroup A includes TSP-1 and TSP-2, which form homotrimers; subgroup B includes TSP-3, TSP-4, and TSP-5, which form homopentamers (Lawler, 2002). The various isoforms of TSPs are the products of different genes, and display differential non-overlapping functions (Stenina-Adognravi, 2013).

TSPs primarily regulate cell-cell and cell-extracellular matrix interactions (Bornstein, 2000) acting through a number of ECM proteins and cell surface receptors and controlling cytoskeletal dynamics, cell migration, and cell attachment (Bornstein et al., 2004). All these activities regulate many aspects of cell phenotype and contribute to angiogenesis and wound healing, vessel wall biology and synaptogenesis (Adams and Lawler, 2011).

Astrocyte-secreted TSP-1, TSP-2 promote synaptogenesis in cultured hippocampal neurons (Xu et al., 2010) and retinal ganglion cells (Christopherson et al., 2015), and TSP-1 can also promote neuronal migration (Iruela-Arispe et al., 1993) and axonal growth (Yu et al., 2008). TPS-1 and TSP-2 are highly expressed during development (Christopherson et al., 2005; Xu et al., 2010; Cahoy et al., 2008) and acts in specific time windows to promote synaptogenesis in the developing brain. TSP-4 is exclusively expressed by mature astrocytes, and represents the mature TSP isoform in the CNS (Bornstein et al., 2004).

Eroglu et al. (2009) have shown for the first time that the synaptogenic epidermal growth factor (EGF)-like repeat domains of TSPs interact with the VWF-A (von Willebrand factor) domain of $\alpha_2\delta$-1. This interaction mediates the synaptogenic activity of TSPs. Accordingly, overexpression of
α₂δ-1 enhanced synaptogenesis in mice, and the α₂δ ligand, gabapentin, restrained the synaptogenic activity of TSPs (Eroglu et al., 2009).

A potential link between alterations in synaptogenesis and absence epilepsy is suggested by the evidence that stargazin mutation in mice causes an impairment in synaptic formation and maturation in the cerebellum (Meng et al., 2006). In addition, double mutant zi/zi, tm/tm rats, which spontaneously develop absence seizures after 6 weeks of age, show a low expression of the synaptic vesicle proteins, SV2A and synaptotagmin-1 (Hanaya et al., 2012). We have found a selective reduction of the transcript encoding for TSP-1 in the ventrobasal thalamus of WAG/Rij (Santolini et al., 2015), which represent a validated genetic rat model of human absence epilepsy (van Luijtelaar and Coenen, 1986; 1997).

An attractive hypothesis is that the TSP-α₂δ axis plays a key role in synaptic formation within the cortico-thalamo-cortical network that lies at the core of the pathophysiology of absence epilepsy (Blumenfeld, 2005) and that defects in either TSPs or α₂δ disrupt synaptic organization in the circuit resulting into absence seizures. TSPs may have a broader role in epileptogenesis that involves other types of epilepsy. Mendus et al. (2015) have recently found that mice with genetic deletion of TSP-1 show an increased sensitivity to chemical kindling induced by repeated administrations of a subconvulsive dose of pentylenetetrazole (PTZ). TSP-1 knockout mice developed generalized tonic-clonic seizures in response to the second administration of PTZ, whereas at least eight administrations were required to produce the same phenotype in wild-type mice (Mendus et al., 2015). Interestingly, TSP-1 knockout mice also showed a reduced expression of both α₂δ-1 and α₂δ-2 subunits in the frontal cortex (Mendus et al., 2015).

In conclusion, the α₂δ subunit subserves pleiotropic functions that may be relevant for the pathophysiology of epilepsy and may be targeted by therapeutic intervention. The role of α₂δ subunit in absence epilepsy cannot be reconducted to the modulation of T-type channels, and may involve other types of VSCCs. Increasing evidence suggests that the TSP-α₂δ axis can be dysfunctional in absence epilepsy and other forms of epilepsy. Abnormalities in either TSPs and/or
$\alpha_2\delta$ subunit may contribute to the process of epileptogenesis, which is ultimately responsible for the recurrence of epileptic seizures. If proven to be correct, this may lay the groundwork for the design of novel disease modifying drugs that are directed towards mechanisms that lie at the core of epileptogenesis.
REFERENCES

Bialer M. Why are antiepileptic drugs used for nonepileptic conditions? Epilepsia. 2012 Dec;53 Suppl 7:26-33.

Coombs ID, Cull-Candy SG. Transmembrane AMPA receptor regulatory proteins and AMPA receptor function in the cerebellum. Neuroscience. 2009 Sep 1;162(3):656-65.

α2δ subunit in absence epilepsy

Modulation of T-type channels

Counterintuitive

Modulation of N- and P/Q-type channels

Regulation of thalamocortical network?

Interaction with thrombospondins

Role in epileptogenesis?