Induction of Heme-oxygenase-1 (HO-1) does not enhance adiponectin production in human adipocytes: Evidence against a direct HO-1 – adiponectin axis

Short title: Evidence against a direct HO-1 – adiponectin axis

Mengliu Yang¹, Masaki Kimura¹, ², Choaping Ng¹, Jingjing He¹, Sahar Keshvari¹, Felicity J. Rose¹, Johanna L. Barclay¹, Jonathan P. Whitehead¹,³

¹Mater Research Institute-UQ, Translational Research Institute, Brisbane, QLD, Australia
²Current address: Faculty of Pharmacy, Keio University, Tokyo, Japan
³Correspondence to: Jon Whitehead, Mater Research Institute-UQ, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4101, Australia.

Tel 61 07 3343 7633.
Email jon.whitehead@mater.uq.edu.au
Abstract

Adiponectin is a salutary adipokine and hypoadiponectinemia is implicated in the aetiology of obesity-related inflammation and cardiometabolic disease making therapeutic strategies to increase adiponectin attractive. Emerging evidence, predominantly from preclinical studies, suggests induction of heme-oxygenase-1 (HO-1) increases adiponectin production and reduces inflammatory tone. Here, we aimed to test whether induction of HO-1 enhanced adiponectin production from mature adipocytes. Treatment of human adipocytes with cobalt protoporphyrin (CoPP) or hemin for 24-48 h increased HO-1 expression and activity without affecting adiponectin expression and secretion. Treatment of adipocytes with TNFα reduced adiponectin secretion and increased expression and secretion of additional pro-inflammatory cytokines, IL-6 and MCP-1, as well as expression of sXBP-1, a marker of ER stress. HO-1 induction failed to reverse these effects. These results demonstrate that induction of HO-1 does not directly enhance adiponectin production or ameliorate the pro-inflammatory effects of TNFα and argue against a direct HO-1 – adiponectin axis.

Keywords: Adiponectin; HO-1; Inflammation; Therapeutic
1. Introduction

Adiponectin is an adipocyte-derived hormone that regulates glucose and lipid metabolism via direct and indirect mechanisms and has beneficial anti-inflammatory, anti-diabetic, anti-atherogenic and cardioprotective properties (Esmaili et al., 2014; Hickman and Whitehead, 2012; Parker-Duffen and Walsh, 2014; Tao et al., 2014). Paradoxically, and in contrast to most other adipocyte-derived hormones or “adipokines”, circulating adiponectin levels are reduced in obesity (Ye and Scherer, 2013). Although the precise mechanisms for this reduction are unclear metabolic, oxidative and or inflammatory stress are all implicated. The structural complexity of adiponectin appears to be an additional factor that makes it particularly sensitive to such cellular stresses (Hickman and Whitehead, 2012). Briefly, adiponectin is synthesised as a monomer that undergoes multimerisation to form higher order species via a coordinated process that involves a number of post-translational modifications. Efficient multimerisation to trimer, hexamer and high molecular weight (HMW) multimers is a prerequisite for efficient secretion. Moreover, functional studies suggest HMW adiponectin is the most metabolically active form (Simpson and Whitehead, 2010; Wang et al., 2008). Evidence suggests that hypoadiponectinemia contributes to the aetiology of obesity-related cardiometabolic diseases and that this typically reflects a selective decrease in the circulating levels of HMW adiponectin (Hickman and Whitehead, 2012). Consistent with this, numerous pre-clinical and clinical studies demonstrate that reversal of hypoadiponectinemia improves a range of cardiometabolic parameters thereby establishing the adiponectin system as an attractive therapeutic target (Lim et al., 2014; Pajvani et al., 2004).

Heme oxygenase-1 (HO-1), which is sometimes called heat shock protein 32 (Hsp32), is an inducible protein that serves as a rate-limiting enzyme catalysing the oxidative degradation of heme to carbon monoxide (CO), iron and biliverdin, which is subsequently converted to bilirubin (Wegiel et al., 2014). Each of the products of HO-1 activity modulates various
aspects of cellular function and homeostasis (Wegiel et al., 2014) prompting some to propose
HO-1 as a dual purpose “sensor/effector” that both senses and responds to oxidative,
inflammatory and metabolic stress (Motterlini and Foresti, 2014). Consistent with this most,
but not all (Jais et al., 2014), investigators promote the induction of HO-1 as an attractive
therapeutic strategy to ameliorate the pathophysiology of a range of human diseases including
metabolic disorders such as insulin resistance, type 2 diabetes and obesity (Hosick and Stec,
2012; Son et al., 2013). As such, considerable efforts are being made to identify efficacious
approaches to induce HO-1 in man (Bharucha et al., 2010; Li et al., 2007; Motterlini and
Foresti, 2014).

Accumulating evidence has led to the suggestion that HO-1 may mediate at least some of its
beneficial effects by increasing circulating adiponectin levels through what has been termed
the “HO-1 – adiponectin axis” (Cao et al., 2012a; Cao et al., 2011; Issan et al., 2012; Kim et
al., 2010; Li et al., 2008; Ndisang and Chibbar, 2014; Ndisang et al., 2014; Ndisang and
Jadhav, 2014; Salamone and Li Volti, 2010; Seow et al., 2011; Vanella et al., 2012). For
example, chronic administration of obese mice with the HO-1 inducer cobalt protoporphyrin
(CoPP) was reported to increase HO-1 protein, prevent weight gain and decrease fat content
(in the absence of any change in food intake), reduce circulating inflammatory cytokines
(including TNFα and IL-6) and increase circulating adiponectin levels (Li et al., 2008).
Consistent with these changes insulin sensitivity and glucose tolerance were improved in this
pre-clinical model thereby providing further evidence of the potential therapeutic benefits of
HO-1 induction. Complementary ex vivo studies on isolated bone marrow-derived
mesenchymal stem cells demonstrated reduced adipogenesis and increased adiponectin
production upon chronic CoPP treatment in support of a regulatory HO-1 – adiponectin axis
(Li et al., 2008).
In spite of the findings detailed above, which typically describe the effects of chronic induction of HO-1 on adiponectin levels in vivo or in vitro, to the best of our knowledge no studies have examined whether induction of HO-1 has a direct effect on adiponectin production. Thus, the purpose of the present work was to test the hypothesis that acute induction of HO-1 in mature adipocytes would increase the production of adiponectin, particularly the more metabolically active HMW multimers. Surprisingly, we found no evidence to support a direct effect of HO-1 on adiponectin production (total or HMW), or improvements in markers of cellular stress, in human adipocytes in a variety of experimental scenarios. These results argue against a direct HO-1 – adiponectin axis.

2. Material and Methods

2.1. Reagents and antibodies

General reagents were obtained from Sigma-Aldrich (Victoria, Australia) and cell culture reagents were obtained from Invitrogen (Victoria, Australia) unless otherwise stated.

2.2. SGBS cell culture, differentiation and treatment

Human SGBS preadipocytes, a gift from Martin Wabitsch (University of Ulm, Ulm, Germany) (Wabitsch et al., 2001), were maintained and differentiated in the absence of serum as described (Newell et al., 2006). Fully differentiated cells (day 14) were treated with increasing concentrations of CoPP (0, 50, 100, and 150 nM) or Hemin (0, 1, 5 µM), or vehicle, in the presence or absence of TNFα (50 ng/mL). Cells and conditioned media were harvested after 24 h or 48 h (following a media change at 24 h for the latter). For experiments performed in the presence of serum, cells were differentiated and maintained in media containing 10% FBS and treated with increasing concentrations of CoPP (0, 5, 10 µM) in the presence or absence of TNFα (50 ng/mL) on day 14. Cells and conditioned media were harvested after 24 h.
2.3. Isolation, culture, differentiation and treatment of Primary Human Preadipocytes

Primary human preadipocytes (phPAs) were isolated from subcutaneous adipose tissue from two subjects (both female, age 25 & 39 years, BMI 24.1 & 23.3, metabolically healthy - no insulin resistance, diabetes or cardiovascular diseases) and cultured independently as described previously (Newell et al., 2006). The procedure was approved by the Research Ethics Committees of the University of Queensland, the Princess Alexandra Hospital, and the Mater Adults Hospital. Both patients had given their written informed consent. Treatments were performed in fully differentiated cells (day 21) as described above (section 2.2).

2.4. Measurement of gene expression by qRT-PCR.

Gene expression was measured by qRT-PCR and standardized against the expression of cyclophilin essentially as previously described (Newell et al., 2006). Briefly, total RNA was extracted using Trizol or RNA Mini Kit (Ambion Life Technologies, Victoria, Australia) according to the manufacturer’s instructions. cDNA was synthesized from 1 µg total RNA using a cDNA synthesis kit (Bioline, NSW, Australia) and RT-PCR was performed using the SYBR Hi-ROX kit (Bioline) on a 7900HT Fast Real-time PCR system (Ambion Life Technologies). Primer sequences are available on request.

2.5. Determination of HO-1, Adiponectin and IL-6 protein

Cellular HO-1 was quantitated in whole cell lysates (in 0.05-0.25 µg protein) using a HO-1 ELISA (Life Sciences, Florida, USA). Secreted total and HMW adiponectin was quantitated using an Adiponectin ELISA Kit (ALPCO, New Hampshire, USA and R&D system, Minnesota, USA). Absolute secreted total and HMW adiponectin levels are presented for each set of experiments in the Figure Legend as mean ± SEM (range: lowest - highest) ng/ml. Data presented in graphs are normalised to values from the control cells (no treatments) which were arbitrarily set at 1. Secreted IL-6 was measured in conditioned media (at a 1 in 2 dilution) using an IL-6 ELISA (R&D system, Minnesota, USA).
2.6. SDS-PAGE/Western blot of ferritin

SDS-PAGE and Western blotting of cleared whole cell lysates (centrifuged at 2,000 x g for 10 min) was performed using standard approaches (Richards et al., 2006). Ferritin antibody was from MP Biomedicals, (Aurora, Ohio, USA - Catalogue # 65077 - used at 1:2,000) and was followed by an Alexa-800 conjugated secondary anti-rabbit antibody (Molecular Probes, VIC, Australia – used at 1:20,000) and scanned using the LI-COR Odyssey Infrared Imaging System.

2.7. Statistical analysis

Data are presented as mean ± SEM. One-way ANOVA followed by Tukeys was used to test for a significant effect of CoPP or hemin in cells incubated without TNFα or independently in cells treated with TNFα. When there was no effect of CoPP or hemin a Student t-test (unpaired) was used to test for a significant effect of TNFα. Differences were considered statistically significant at p<0.05. Statistical analyses were performed using GraphPad Prism 5.0.

3. Results

3.1. Acute CoPP treatment induces HO-1 in a dose-dependent manner in SGBS adipocytes

To investigate whether induction of HO-1 has a direct effect on adiponectin expression or secretion we first performed a series of dose response studies in mature (day 14) human SGBS adipocytes to identify optimal CoPP concentrations. We established that treatment with CoPP for 24-48 h at concentrations from 50-150 nM was sufficient to promote robust (10-50 fold) induction of HO-1 mRNA and protein in control cells as well as cells treated with the pro-inflammatory cytokine TNFα (Fig 1A-D), which compromises adiponectin expression and secretion (Rose et al., 2010). Treatment of SGBS adipocytes with higher concentrations of CoPP (from 600 nM to 10 µM) failed to promote any further significant
increase in HO-1 levels, but induced signs of toxicity at concentrations greater than 2 µM (data not shown). Thus, subsequent experiments were performed using CoPP in the 50-150 nM range.

3.2. Acute CoPP treatment has no effect on adiponectin production in SGBS adipocytes

Having established that treatment with CoPP for 24-48 h was sufficient to induce HO-1, in the absence or presence of TNFα, we then examined the effects of CoPP treatment on adiponectin expression and secretion. There was no significant effect of CoPP treatment on adiponectin mRNA levels after 24 or 48 h treatment in either the control or the TNFα treated cells (Fig 2A & B). TNFα treatment significantly reduced adiponectin mRNA levels to around 50% of those in control cells. Measurement of secreted total and HMW adiponectin into the conditioned media was performed by ELISA. There was no significant effect of CoPP treatment on total or HMW adiponectin secretion after 24 or 48 h treatment in either the control or TNFα treated cells (Fig 2C-F). TNFα treatment significantly reduced total and HMW adiponectin secretion by around 40% and 80% at 24 and 48 h respectively. These results indicate that CoPP has no effect on adiponectin mRNA expression or protein secretion in healthy SGBS adipocytes or in TNFα-treated adipocytes where adiponectin expression and secretion is significantly compromised.

3.3. Acute CoPP treatment has no effect on pro-inflammatory cytokine production in SGBS adipocytes

Induction of HO-1 has been shown to reduce the circulating levels of pro-inflammatory cytokines (Burgess et al., 2010; Vanella et al., 2013). To investigate whether HO-1 induction mediated such beneficial effects in SGBS adipocytes we examined the effects of CoPP treatment on TNFα-induced IL-6, TNFα and MCP-1 expression and IL-6 secretion. TNFα treatment for 24-48 h resulted in a significant increase in IL-6 mRNA and secretion (Fig 3A-D) as well as TNFα and MCP-1 expression (Fig 3E-H). However, treatment with CoPP failed
Yang et al, Evidence against a direct HO-1 – adiponectin axis

to ameliorate the pro-inflammatory effects of TNFα. These results indicate that CoPP has no
effect on pro-inflammatory cytokine production in healthy SGBS adipocytes or in TNFα-
treated adipocytes where pro-inflammatory cytokine production is significantly increased.

3.4. Acute CoPP treatment has no effect on ER stress

We next went on to investigate the effects of HO-1 induction and TNFα-treatment on
markers of ER stress. TNFα treatment resulted in a significant, two-fold increase in sXBP-1
expression and this was unaffected by HO-1 induction (Fig 4A & B). Treatment with CoPP
or TNFα had no significant effect on GRP78 (BiP) or CHOP expression (Fig 4C-F).

3.5. Addition of exogenous substrate does not promote a response to HO-1 induction in SGBS
adipocytes

The above studies were performed in SGBS adipocytes differentiated and maintained in
defined medium without serum in accordance with our standard experimental approaches
(Hutley et al., 2011; Newell et al., 2006; Widberg et al., 2009). Thus, it remained plausible
that the lack of any discernible effect of HO-1 induction on adiponectin or pro-inflammatory
cytokine production may reflect limited substrate availability (Sheftel et al., 2007). To
investigate whether this was the case we employed complementary approaches. First, we
performed similar experiments in cells treated with hemin, which serves as both inducer and
substrate of HO-1 (Shan et al., 2006; Sheftel et al., 2007). Treatment with hemin at
concentrations from 1-5 μM for 48 h was necessary and sufficient to promote a 5-10 fold
induction in cellular HO-1 protein (Fig 5A & data not shown). However, such induction of
HO-1 had no effect on adiponectin or IL-6 secretion in control or TNFα treated cells (Fig 5B
& C). Second, we determined the effects of HO-1 induction with hemin or CoPP on ferritin
protein levels, which serves as an indirect marker of HO-1 activity (Sheftel et al., 2007). As
expected, induction of HO-1 with either hemin or CoPP markedly induced the levels of
ferritin protein (Fig 5D & E). Third, we performed experiments in cells that were
differentiated and subsequently treated with CoPP in the presence of 10% fetal bovine serum.
Treatment with CoPP induced HO-1 (Fig 6A), although higher concentrations (5-10 µM)
were required to induce HO-1 to the levels observed following treatment in the absence of
serum, probably reflecting sequestration of CoPP via binding to serum factors. TNFα
treatment significantly reduced adiponectin production and increased IL-6 production, albeit
to a lesser extent than was observed in the absence of serum. There was no significant effect
of CoPP on adiponectin or IL-6 production in either the control or TNFα-treated cells (Fig
6B-E). Collectively, these data indicate that induction of HO-1, even in the presence of
exogenous substrates, does not affect adiponectin production nor reduce the pro-
inflammatory effects of TNFα in mature SGBS adipocytes.

3.6. Acute CoPP treatment induces HO-1 in primary human adipocytes but does not affect
adiponectin and IL-6 production

Next, to extend our observations from the SGBS adipocytes we performed similar
experiments in primary human adipocytes treated in the absence and presence of serum.
Treatment with CoPP for 24 h promoted a dose-dependent increase in HO-1 mRNA and this
was comparable in the absence or presence of TNFα (Fig 7A & B). Treatment with TNFα
significantly reduced adiponectin production and increased IL-6 production (Fig 7C-J).
Induction of HO-1 with CoPP had no impact on adiponectin or IL-6 production in control or
TNFα treated cells in either the absence or presence of serum (Fig 7C-J). These results are
consistent with those from the SGBS adipocytes and argue against the existence of a direct
HO-1 – adiponectin axis and any major anti-inflammatory role for HO-1 in the context of
mature human adipocytes.
4. Discussion

In the current investigation we aimed to determine whether induction of HO-1 has a direct effect on adiponectin production from mature adipocytes, and thereby contribute to the purported HO-1 – adiponectin axis. We could find no evidence to support a direct beneficial effect of HO-1 induction on adiponectin expression or secretion in healthy or TNFα-treated SGBS or primary human adipocytes. Indeed, despite robust induction of HO-1 mRNA, protein and activity, we observed no beneficial effects of HO-1 induction on these parameters or on TNFα-induced ER stress or pro-inflammatory adipocytokine production.

Numerous reports have described an association between pharmacological induction of HO-1 and increased circulating levels of the beneficial adipokine adiponectin, in in vivo studies in rodents (Cao et al., 2012a; Cao et al., 2011; Cao et al., 2012c; Hinds et al., 2014; Kim et al., 2008; L’Abbate et al., 2007; Li et al., 2008; Ndisang and Jadhav, 2014; Vanella et al., 2012; Vanella et al., 2013), and in vitro studies, showing increased adiponectin secretion from adipocytes (Kim et al., 2008; Vanella et al., 2013). These observations stimulated the proposal of a HO-1 – adiponectin axis (Cao et al., 2012a; Cao et al., 2011; Issan et al., 2012; Kim et al., 2010; Li et al., 2008; Ndisang and Chibbar, 2014; Ndisang et al., 2014; Ndisang and Jadhav, 2014; Salamone and Li Volti, 2010; Seow et al., 2011; Vanella et al., 2012) which could underpin, at least in part, the favourable effects of HO-1 induction reported in most pre-clinical models of obesity and related cardiometabolic disorders. Thus, we reasoned information affording a greater understanding of the cellular and molecular framework of the HO-1 – adiponectin axis would help to identify, validate and progress development of efficacious therapeutic approaches.

To this end, we performed a series of experiments on mature SGBS and primary human adipocytes differentiated in vitro. Treatments were limited to mature adipocytes in order to reduce the potential for confounding effects on the differentiation process, as has been
reported by others (Kim et al., 2008; Peterson et al., 2009; Vanella et al., 2010; Vanella et al., 2013), and incubation periods were limited to 24-48 h to reduce the likelihood of secondary effects. As expected, treatment with two widely used inducers of HO-1, CoPP and Hemin, resulted in increased HO-1 expression at both the mRNA and protein level. A concomitant increase in HO-1 activity was demonstrated by increased ferritin protein, the levels of which are elevated in response to the increase in cellular iron levels (Sheftel et al., 2007). Perhaps surprisingly then, we found no evidence of any effect on adiponectin expression, multimerisation or secretion. This was the case in healthy control adipocytes as well as adipocytes co-treated with TNFα, a pro-inflammatory cytokine implicated in the aetiology of obesity-related cardiometabolic dysfunction, known to promote insulin resistance and compromise adiponectin production from adipocytes (Rose et al., 2010). Furthermore, there was no indication of any impact of HO-1 induction on other markers of cellular stress stimulated by TNFα, most notably the induction of other pro-inflammatory cytokines including IL-6 and MCP-1 as well as induction of TNFα itself.

The above findings indicate that acute induction of HO-1 has no direct effect on adiponectin, or adipocytokine, production at the level of the mature adipocyte and instead support a model where the association between HO-1 induction and increased circulating adiponectin levels most likely represents a chronic or indirect effect. One possibility is that chronic induction of HO-1 may increase adiponectin via altering differentiation of preadipocytes. Consistent with this, *in vitro* studies showed that chronic induction of HO-1, via CoPP administration throughout differentiation, promoted increased adiponectin secretion, albeit in the context of reduced adipogenesis (Kim et al., 2008; Vanella et al., 2013). Whilst it seems somewhat paradoxical that inhibition of adipogenesis would result in increased adiponectin secretion, given the dose-dependent effects of chronic CoPP treatment (Vanella et al., 2013) and the finding that adiponectin secretion is highest in ‘immature’ adipocytes (Luo et al., 2012) it
remains possible that there is an ‘optimal window’ for adiponectin secretion that was somewhat serendipitously established in these investigations (Kim et al., 2008; Vanella et al., 2013). In vivo findings showing altered adipose tissue architecture consistent with reduced adipocyte hypertrophy and increased adipocyte number appear to support such a model, however increased adipogenesis is intrinsically required in such a situation (Luo et al., 2012). Further investigations are required to establish whether this is the case or whether the decrease in adipocyte hypertrophy simply reflects a decrease in body weight (see below).

Another possibility is that induction of HO-1 may mediate adiponectin production from adipocytes indirectly via its effects on other cell types. For example, a recent report demonstrates that acute (24 h) induction of HO-1 via hemin increases adiponectin expression from 3T3-L1 adipocytes co-cultured with Raw264.7 macrophages (Tu et al., 2014). The inflammatory tone of the co-cultured 3T3-L1 adipocytes and Raw264.7 macrophages was reduced upon hemin treatment with cellular markers suggesting increased levels of M2 macrophage polarisation. Complementary in vivo investigations showed hemin administration reduced adipose tissue inflammation in mice fed a HFD for 2 weeks concomitant with reduced markers of M1 macrophage polarisation (Tu et al., 2014). A caveat to this and most other in vivo studies is that induction of HO-1 is typically associated with a reduction in body weight and/or body weight gain (Cao et al., 2012a; Cao et al., 2012b; Csongradi et al., 2012; Hinds et al., 2014; Li et al., 2008; Ndisang et al., 2014; Ndisang and Tiwari, 2015; Tu et al., 2014) which would, in itself, be predicted to decrease adipose tissue as well as systemic inflammation and to increase adiponectin.

Genetic attempts to increase the activity of HO-1 specifically in adipocytes have also been performed. Two independent studies used the aP2 promoter to drive expression of HO-1 in adipocytes via lentiviral or transgenic approaches. In the first, intracardial injection of a lentiviral (aP2-HO-1) construct resulted in increased expression of HO-1 in adipose tissue...
and this was sufficient to attenuate high fat diet (HFD) induced changes in body weight, associated metabolic sequelae and improved adiponectin (Cao et al., 2012b). In the second, a classic transgenic approach was used to increase HO-1 in adipose tissue but, in contrast to the above report, this failed to ameliorate HFD-induced obesity, insulin resistance or the decrease in adiponectin (Huang et al., 2013). The explanation for such contrasting findings remains obscure but may, at least in part, be explained by the different methodologies employed to increase HO-1. It is noteworthy that in both instances expression of HO-1 in cells other than mature adipocytes is to be expected as the aP2 promoter is switched on early in the differentiation process, meaning immature adipocytes will also express increased HO-1, and it also drives gene expression in a range of non-adipocyte cells including cardiomyocytes and macrophages (Wang et al., 2010). Consistent with the latter, transgenic overexpression of HO-1 by aP2 resulted in increased HO-1 in peritoneal macrophages, and, although this was sufficient to affect the expression of some M2 markers in the adipose tissue of transgenic mice it was not sufficient to protect against obesity, decreased adiponectin and metabolic dysfunction (Huang et al., 2013). Taken together these studies further highlight the association between reduced body weight and improved adiponectin levels.

Whilst the overwhelming weight of evidence argues in favour of a beneficial effect of HO-1 induction in the context of cardiometabolic disease there remain a number of elements that demand further exploration. For example, it is unclear what mechanism(s) underpin any observed changes in body weight. Reduced food intake (Galbraith and Kappas, 1989, 1991) and elevated metabolism, heat production and activity (Csongradi et al., 2012) have been proposed although, at least in some instances, these changes appear to occur in the presence of HO-1 inhibition (Choudhary et al., 2013; Ndisang and Tiwari, 2015), arguing against a central role for HO-1 activity in this context. However, perhaps the most thought-provoking and challenging work in this area comes from the recent, elegant and comprehensive report
from Pospisilik, Esterbauer and colleagues (Jais et al., 2014) which continues to put HO-1 centre-stage of obesity and insulin resistance but as a driver rather than a brake of obesity-associated inflammation. In keeping with findings from the current study, they found no evidence of a major role for HO-1 in the adipocyte or muscle or pancreatic β-cells (Jais et al., 2014). However, they presented compelling data to indicate a predominant role for HO-1 in both myeloid and hepatic cells that lead them to propose inhibitors, rather than inducers, of HO-1 may represent effective therapeutic agents (Jais et al., 2014).

In summary, in the current report we demonstrate that induction of HO-1 in human adipocytes has no direct effect on adiponectin production. In addition, induction of HO-1 did not ameliorate the effects of TNFα on adiponectin or pro-inflammatory adipocytokine production. These findings argue against a direct HO-1 – adiponectin axis and also suggest mature adipocytes are unlikely to be acutely involved in mediating the systemic effects of HO-1 induction.

Acknowledgements

This work was funded by a University of Queensland International Research Scholarship to MY and an Australian National Health and Medical Research Council Fellowship to JPW (511104).
5. References

resistance through increased levels of HO-1, pAMPK, and pAKT in obese mice. J Lipid Res 50, 1293-1304.

6. Figure Legends

Fig 1. Acute CoPP treatment (24-48 h) induces HO-1 in a dose-dependent manner in SGBS adipocytes. Fully differentiated SGBS adipocytes were incubated with increasing concentrations of CoPP (50, 100 and 150 nM) in the absence or presence of TNFα (50 ng/mL) for either 24 or 48 h. HO-1 mRNA after treatment for (A) 24 or (B) 48 h. HO-1 protein after treatment for (C) 24 or (D) 48 h. Values are presented as mean ±SEM of 4 independent experiments and expressed as fold-increase over untreated control. ** = p<0.01, *** = p<0.001 significant difference compared to control.

Fig 2. CoPP has no effect on adiponectin production in SGBS adipocytes. Fully differentiated SGBS adipocytes were incubated with increasing concentrations of CoPP (50, 100 and 150 nM) in the absence or the presence of TNFα (50 ng/mL) for either 24 h or 48 h. Adiponectin mRNA after treatment for 24 h (A) and 48 h (B). Total adiponectin secretion after treatment for 24 h (E) and 48 h (F). Values are presented as mean ±SEM of 4 independent experiments and expressed as fold-increase over untreated control. ** = p<0.01, *** = p<0.001 significant difference compared to non-TNFα treated cells. Absolute secreted total / HMW adiponectin concentrations for control cells were: 24 h - total 173.5 ± 37.6 (99.1 – 263.5) / HMW 69.4 ± 23.7 (27.5 – 137.2); 48 h - total 122.3 ± 43.8 (33.5 – 218.0) / HMW 55.9 ± 20.8 (12.3 – 106.5) ng/ml.

Fig 3. CoPP does not ameliorate TNFα-stimulated pro-inflammatory cytokine production in SGBS adipocytes. Fully differentiated SGBS adipocytes were incubated with increasing concentrations of CoPP (50, 100 and 150 nM) in the absence or presence of TNFα (50 ng/mL) for either 24 or 48 h. IL-6 mRNA after treatment for (A) 24 h and (B) 48 h. IL-6 secretion after (C) 24 and (D) 48 h. TNFα mRNA after (E) 24 h and (F) 48 h. MCP-1 mRNA after (G) 24 h and (H) 48 h. Data are presented as mean ±SEM of 4 independent experiments and expressed as fold-increase over untreated control. **=p<0.01, ***=p<0.001 significant difference compared to non-TNFα treated cells.

Fig 4. CoPP has no effect on markers of ER stress in SGBS adipocytes. Fully differentiated SGBS adipocytes were incubated with increasing concentrations of CoPP (50, 100 and 150 nM) in the absence or presence of TNFα (50 ng/mL) for either 24 or 48 h. sXBP-1 mRNA after 24 h (A) and 48 h (B). BIP mRNA after 24 h (C) and 48 h (D). CHOP mRNA after 24 h (E) and 48 h (F). Values are presented as mean ±SEM of 4 independent experiments and expressed as fold-increase over untreated control. ** = p<0.01, *** = p<0.001 significant difference compared to control.
experiments and expressed as fold-increase over untreated control. *** = p<0.001 significant difference compared to non-TNFα treated cells.

Fig 5. Induction of HO-1 with hemin has no effect on adiponectin or pro-inflammatory cytokine production in SGBS adipocytes. Fully differentiated SGBS adipocytes were incubated with increasing concentrations of hemin (1 and 5 μM) in the absence or presence of TNFα (50ng/mL) for 48 h. (A) Cellular HO-1 protein. (B) Secreted total adiponectin. (C) Secreted IL-6. Fully differentiated SGBS adipocytes were incubated with hemin (5 μM) or CoPP (150 nM) in the absence or presence of TNFα (50ng/mL) for 48 h. (D) and (E) Cellular ferritin levels. Data are presented as mean ±SEM of 4 independent experiments and expressed as fold-increase over untreated control. *=p<0.05, **=p<0.01, ***=p<0.001 significant difference compared to control or non-TNFα treated cells. #=p<0.05 significant difference compared to TNFα treatment. Absolute secreted total adiponectin for control cells was: 577.3 ± 56 (417.9 – 663.6) ng/ml.

Fig 6. Induction of HO-1 with CoPP has no effect on adiponectin or pro-inflammatory cytokine production in SGBS adipocytes in serum. Mature SGBS adipocytes were differentiated and maintained in the presence of serum and then incubated with increasing concentrations of CoPP (5 and 10 μM) in the absence or the presence of TNFα (50 ng/mL) for 24 h. (A) HO-1 mRNA. (B) Adiponectin mRNA and (C) Adiponectin (total) secretion. (D) IL-6 mRNA and (E) secretion. Data are presented as mean ±SEM of 4 independent experiments and expressed as fold-increase over untreated control. *=p<0.05, **=p<0.01, ***=p<0.001 significant difference compared to control or non-TNFα treated cells. Absolute secreted total adiponectin for control cells was: 340.8 ± 42.6 (280.6 - 401.1) ng/ml.

Fig 7. Induction of HO-1 with CoPP has no effect on adiponectin or pro-inflammatory cytokine production in primary human adipocytes. Primary human adipocytes were differentiated in the absence or presence of serum and then incubated in the same with increasing concentrations of CoPP (50, 100 and 150 nM in the absence of serum; 5 and 10 μM in the presence of serum) in the absence or the presence of TNFα (50 ng/mL) for 24 h. HO-1 mRNA in the (A) absence (B) and presence of serum. Adiponectin mRNA in the (C) absence and (D) presence of serum. Secreted total adiponectin in the (E) absence and (F) presence of serum. IL-6 mRNA in the (G) absence and (H) presence of serum. Secreted IL-6 in the (I) absence and (J) presence of serum. Data are presented as mean ±SEM of 2
independent experiments and expressed as fold-increase over untreated control. ***=p<0.001 significant difference compared to control or non-TNFα treated cells. Absolute secreted total adiponectin for control cells was: minus serum - 1143.4 ± 16.7 / plus serum - 514.4 ± 14.5 ng/ml
Highlights

We report that in mature human adipocytes:

- Inducers of HO-1 acutely (24-48 h) increase HO-1 mRNA, protein and activity

- Acute induction of HO-1 does not enhance or rescue adiponectin production in healthy or TNFα-treated cells

- Acute induction of HO-1 does not ameliorate TNFα-stimulated expression and secretion of pro-inflammatory adipocytokines
Figure 1.
Figure 2.
Figure 3.
Figure 4.

A 24 h

B 48 h

C

D

E

F

β-catenin

δ-catenin

CoPP

TNFα

CHOP mRNA (fold)

CHOP mRNA (fold)
Figure 6.
Figure 7.