An improved estimate of microbially mediated carbon fluxes from the Greenland ice sheet

Cook, J. M. and Hodson, A. J. and Anesio, A. M. and Hanna, E. and Yallop, M. and Stibal, M. and Telling, J. and Huybrechts, P. (2012) An improved estimate of microbially mediated carbon fluxes from the Greenland ice sheet. Journal of Glaciology, 58 (212). pp. 1098-1108. ISSN 0022-1430

Full text not available from this repository.

Item Type:Article
Item Status:Live Archive

Abstract

Microbially mediated carbon fluxes on the surface of the Greenland ice sheet (GrIS) were recently quantified by Hodson and others (2010) using measurements of the surface coverage of debris (cryoconite) and rates of biological production associated with debris near the ice-sheet margin. We present updated models that do not assume the same spatial uniformity in key parameters employed by Hodson and others (2010) because they make use of biomass distribution and biological production data from a 79 km transect of the GrIS. Further, the models presented here also include for the first time biomass associated with both cryoconite holes and surficial algae. The predicted annual carbon flux for a small (1600km2) section of ice surrounding the field transect is about four times that estimated using spatially uniform biomass and production in this area. When surficial algae are included, the model predicts about 11 times more carbon fixation via photosynthesis per year than the cryoconite-only models. We therefore suggest that supraglacial carbon fluxes from the GrIS have previously been underestimated by more than an order of magnitude and that the hitherto overlooked surficial algal ecosystem can be the most crucial contributor. The GrIS is shown to be in a relatively stable state of net autotrophy according to our model and so a strong link between bare-ice area and total carbon fluxes is evident. The implication is a biomass feedback to surface albedo and enhanced ablation as a result. Climate predictions for the year 2100 show that greater carbon fixation could also result from climate warming.

Keywords:albedo, alga, autotrophy, biomass, carbon fixation, carbon flux, ice margin, ice sheet, Arctic, Greenland, algae, bmjdoi
Subjects:F Physical Sciences > F330 Environmental Physics
Divisions:College of Science > School of Geography
Related URLs:
ID Code:26031
Deposited On:23 Feb 2017 20:16

Repository Staff Only: item control page