Use of Monosaccharides in Metal-Catalyzed Coupling Reactions

Sara H. Kyne* and Jason E. Camp*†

1School of Chemistry, University of Lincoln, Lincoln LN6 7TS, United Kingdom
2Department of Chemical Sciences, University of Huddersfield, Huddersfield HD1 3DH, United Kingdom

ABSTRACT: The addition of monosaccharides to metal-catalyzed coupling reactions can be beneficial in terms of decreasing the time required, chemical waste products and overall cost of the process. Monosaccharides are used in a number of different ways, including (a) acting as a ligand for the metal, (b) providing the appropriate reduction potential for a chemical process and (c) acting as a reducing agent for the formation and stabilization of catalytically active metal nanoparticles. Recently, there has been a significant amount of research in this growing field and there is thus the potential for the addition of monosaccharides to coupling reactions to have a significant impact on the synthesis of the important small molecules on which we have all come to rely. This Perspectives Article will cover recent developments in the addition of monosaccharides to metal-catalyzed coupling reactions with an emphasis on their utility and limitations in order to facilitate the further development of this exciting area of research.

KEYWORDS: Monosaccharide, Biorenewables, Metal catalysis, Green chemistry, Nanoparticle

INTRODUCTION

Metal-catalyzed coupling processes are a ubiquitous part of the modern chemists’ toolkit for the synthesis of added-value small molecules on which we have all come to rely. To make these processes more efficient, in terms of time, expense and cost to the environment, unmodified monosaccharides have been added to metal-catalyzed reactions as part of research into the use of biorenewables in catalytic/chemical reactions. The addition of monosaccharides can serve many purposes in these reactions, including (a) acting as a ligand for the metal, (b) providing the reduction potential for a chemical process and (c) acting as a reducing agent for the formation and stabilization of catalytically active metal nanoparticles. The ability of monosaccharides to reduce metals has been known for decades, for example Benedict’s or Fehling’s tests, but their use in cross-coupling reactions has flourished in recent years. This review will focus on the latest uses of monosaccharides in metal-catalyzed coupling reactions. Because of recent reviews and full publications, the following areas will not be covered in this review: polysaccharides, and smaller sugar derived aldehydes/carboxylic acids (Leuckart–Wallach reaction) or reactions in which sugars are used as starting materials or incorporated into the molecule.

MONOSACCHARIDES AS LIGANDS

One of the most common uses of monosaccharides in metal-catalyzed reactions are as ligands for a catalytically active metal species. For example, Sekar and Thakur recently disclosed the synthesis of phenols 2 from aryl halides 1 in a process that was catalyzed by a copper/glucose system (Scheme 1). Aryl iodides and bromides 1 were reacted with excess potassium hydroxide (4–8 equiv) in the presence of copper(II) acetate (5 mol %) and D-glucose (5 mol %) to give good to excellent yields of the corresponding phenols 2. The reactivity of aryl chlorides depended on the nature of the electron withdrawing group with substrates containing a nitro group giving an excellent yield of phenol 2. Recently, a number of carbon–nitrogen cross-coupling reactions have been developed employing a catalytic system formed in situ from copper(I) iodide and D-glucose in the presence of base. For example, anilines were formed from aryl halides in the presence of excess aqueous ammonia (10 equiv) or sodium azide (3 equiv). Zhang et al. reported the use of similar conditions for the cross-coupling of aryl halides 3 with nitrogen heterocycles 4 (1.2 equiv.; Scheme 2). Most of the examples used imidazole as the heterocycle 4, and good yields were observed for aryl iodides 3 bearing electron-withdrawing groups.
groups. Unfortunately, the reaction did not occur with aryl chlorides.

Zhang et al. extended this methodology to carbon-sulfur cross-coupling reactions. In this work, aryl iodides 6 were reacted with diphenyl disulfide (7, 0.6 equiv) in the presence of copper(1) iodide (10 mol %), D-glucosamine (10 mol %) and cesium carbonate (2 equiv) to give the corresponding unsymmetrical diaryl sulfide 8 (Scheme 3). When aryl bromides were tested the reaction occurred, but required 24 h to go to completion. Similar methodology was used by the same group to synthesize a variety of diaryl sulfones from aryl halides and sodium benzenesulfonates.

D-glucosamine has also been successfully employed as a ligand in iron-catalyzed Grignard cross-coupling reactions of halides and sodium benzenesulfonates. When aryl iodides were tested the reaction occurred, but required 24 h to go to completion. Similar methodology was used by the same group to synthesize a variety of diaryl sulfones from aryl halides and sodium benzenesulfonates.

D-glucosamine hydrochloride (5 mol %). Triethylamine (5 mol %) was added to deprotonate the ligand and thus increase its reaction rate. D-glucosamine was shown to improve the yield in palladium-catalyzed Mizoroki-Heck reactions of aryl halides. When aryl chlorides 14 reacted, albeit with low conversion (5–25%).

MONOSACCHARIDES FOR NANOPARTICLE FORMATION

One of the most common uses of monosaccharides in organic transformations are as reductants for the formation of metal nanoparticles, in which the sugar serves to reduce the metal in the presence of a template. Monosaccharides, glucose in particular, have also been used as supports for metal nanoparticles. In some cases, the monosaccharides act as both the stabilizer for the metal nanoparticles as well as the reducing agent. Alternatively, additional reducing agents can be added to the mixture of sugar and metal if required. For example, monodispersed colloidal carbon spheres have been synthesized by a two-step hydrothermal approach under mild conditions by Sun et al. In this work, separating the nucleation and growth steps allowed for a narrow size distribution with diameters ranging from 160 to 400 nm. Interestingly, the size distribution decreased with an increasing concentration of glucose. D-Glucose has also been used as the metal nanoparticle support. In this case, palladium(0) nanoparticles were synthesized by the reduction of H₂[PdCl₄] or [Pd(NH₃)₄Cl₂]Cl₂ in the presence of excess hydroxylamine and nanoparticle reduction. D-Glucose under ambient, aqueous conditions. Characterization of the palladium nanoparticles revealed magnetization differences depending on the oxidation state of the palladium precursor. TEM analysis revealed that when starting from the Pd(II) complex, the nanoparticles were an average size of 6 nm and polydispersed, whereas starting from the Pd(IV) complex formed nanoparticles with an average size of 8 nm that were mainly monodispersed. In 2004, Sun and Li reported the synthesis of colloidal carbon spheres starting from glucose, which underwent subsequent functionalization due to the reactive surface present. For example, the FTIR spectrum revealed the existence of carbonyl and hydroxyl groups that maintained the hydrophilicity of the carbon spheres. Colloidal carbon spheres were prepared from aqueous glucose by hydrothermal synthesis, undergoing aromatization and carbonization to form 200 nm carbon spheres at 160 °C in 3.5 h, and 1500 nm at 180 °C in 10 h. Under reflux, palladium(0) nanoparticles were loaded onto the surface, covering the carbon spheres with a uniform shell of 10–20 nm palladium. In related methodology, Zhang et al. described the preparation of highly dispersed, narrow diameter palladium nanoparticles on carbon spheres via in situ reduction. Precise control of the dispersity and size of the palladium(0) nanoparticles was possible by careful adjustment of the reaction conditions (temperature, time, pH and ratio of palladium(0) to carbon spheres). Homogeneously distributed, small diameter (7.7 nm) palladium crystals were prepared on carbon spheres at pH 7.0 in ethanol at 70 °C.
The isolated metal nanoparticles have subsequently been used in a number of important catalytic processes. For example, Sen et al. recently reported a palladium(0) nanoparticle catalyzed domino Sonogashira-cyclization reaction to synthesize various isoindoliones 20 and furoquinolines 21 in good yields (Scheme 6).59 Palladium(0) nanoparticles were prepared by the procedure of Sarkar et al. in which H₂[PdCl₄] was reduced in the presence of hydroxylamine and D-glucose under aqueous conditions.60 Following the reaction, the catalyst could be recovered in high yield and a recycling study showed only a gradual decrease in activity for up to five subsequent reactions before significant loss of yield was observed.

Monosaccharides can also be added to organic transformations to act as reductants for chemical processes that occur in the absence of catalyst61 or to reduce a metal precatalyst to the necessary oxidation state in situ so that the reaction can proceed. This concept has been employed for a variety of reactions such as dehalogenations,62 reductions63−66 and coupling processes. Glucose can also be used for the in situ formation of the active metal catalyst. For example, Cuevas-Yañez et al. showed that addition of 25 mol % of glucose to the reaction mixture resulted in an increased yield of the desired triazoles 24 from alkynes 22 and azides 23 under copper-catalyzed click reaction conditions (Scheme 7).67

Monosaccharides as Reductants in Chemical Processes

Monosaccharides can also be added to organic transformations to act as reductants for chemical processes that occur in the absence of catalyst61 or to reduce a metal precatalyst to the necessary oxidation state in situ so that the reaction can proceed. This concept has been employed for a variety of reactions such as dehalogenations,62 reductions63−66 and coupling processes. Glucose can also be used for the in situ formation of the active metal catalyst. For example, Cuevas-Yañez et al. showed that addition of 25 mol % of glucose to the reaction mixture resulted in an increased yield of the desired triazoles 24 from alkynes 22 and azides 23 under copper-catalyzed click reaction conditions (Scheme 7).67

In related work, Singh et al. showed that it was beneficial to add glucose to copper-catalyzed click reactions68 that were part of a multicomponent coupling reactions under microwave conditions (Scheme 8). Thus, the three component reaction of phenylazides 25, 4-(prop-2-yn-1-yl)oxy)benzaldehydes 26, and 1,2-diaminobenzenes 27 afforded the triazole adducts 28 in good yields (Scheme 8a).69 Additionally, a four component process resulted in the efficient formation of 3-phenyl-2-{4-{(1-phenyl-1H-1,2,3-triazol-4-yl)methoxy}phenyl}thiazolidin-4-ones 29 from readily available starting materials (Scheme 8b).70 In both cases, the glucose is purported to reduce the copper to the catalytically active species. Related work by Wan et al. demonstrated that copper–glucose systems catalyzed the three component reactions of phenols, acryl chlorides and Wittig reagents to form β-aryloxylacrylates.71 Furthermore, Guchhait et al. developed a novel A'-coupling method for the synthesis of N-fused imidazoles using a copper(II) sulfate–glucose catalyst.72 This methodology was subsequently harnessed by Iyer et al. for the synthesis of luminescent imidazo[1,2-a]pyridines.73

MONOSACCHARIDES FOR THE IN SITU FORMATION/STABILIZATION OF CATALYSTS

One of the most important advances in this area is the ability to form catalytically active metal nanoparticles in situ from unmodified reducing sugars and subsequently recycle the catalyst. Traditionally, biderived metal catalysts need to be synthesized and isolated prior to reaction, and are frequently difficult to recycle following the reaction, which can increase the amount of time, chemical waste and expense of the overall process.74−81 Building upon the work in nanoparticle formation from reducing sugars, and the use of reducing sugars as catalysts, this method was expanded to work in situ.75,76 Thus, the homocoupling of bromo- and chloroarenes 30 in the presence of glucose (0.5 equiv), palladium(II) acetate (3 mol %) and tetrabutylammonium hydroxide (3.0 equiv) afforded the desired biaryl 31 in good yield. In this process, the glucose is postulated to both reduce the palladium(II) acetate to the catalytically active palladium(0) species, as well as stabilize the in situ formed catalyst through the formation of nanoparticles.215 In contrast to other related reports (vide infra), exogenous 26 Campbell agents were used in this study. TEM analysis was used to confirm the formation of nanoparticles, which had an average particle size around 15 nm, and XPS was used to show that the palladium in the isolated nanoparticles was in the zero oxidation state. A recycling study demonstrated that the catalytic solution was active for 3 cycles, but the yield decreased precipitously thereafter.

Nacci et al. also showed that an Ullman type homocoupling of haloarenes 32 to give the corresponding biaryl 33 could be facilitated by gold nanoparticles formed in situ from the reduction of gold(III) acetate (2 mol %) with a stoichiometric amount of glucose (Scheme 10). This catalytic system was active for bromo- and iodo-substituted arenes 32, as well as alkynes. The less reactive aryl chlorides were found to be unreactive under the reaction conditions. It was also found that the ionic liquid tetrabutylammonium acetate (TBAA) was a competent solvent and base for the reaction, which could substitute for water. Interestingly, the nanoparticles formed in the ionic liquid were much larger than those formed in water (ca. 2 nm vs. Twenty nm respectively) and in general resulted in a decreased yield compared to the aqueous conditions.216 Unfortunately, attempts at recycling these catalysts showed a similar poor performance to the palladium system discussed above (cf. Scheme 9).

Recently, we disclosed methods for the use of glucose derived palladium(0) nanoparticles as in situ formed catalysts for Suzuki–Miyaura cross-coupling reactions in the green solvent isopropyl alcohol (Scheme 11).82 The cross-coupling of 244
aryl iodides and aryl boronic acids in the presence of palladium(II) acetate (1 mol %) and glucose (5 mol %) gave the desired biaryls in moderate to good yields under either thermal or microwave heating conditions. In contrast to the reports of Nacci et al., only a small amount of glucose was required and no capping agents were employed. EF-TEM analysis of the in situ formed nanoparticles showed that the palladium was surrounded by a hydrophilic, hydroxylated shell. The hydrophilic/polar nature of the nanoparticles allowed for their facile removal from the cross-coupled product. ICP-MS analysis showed a 65% decrease in the amount of metal incorporated into the final compounds compared to reactions that did not contain glucose. Interestingly, Jiang and Fossey et al. have found that monosaccharides bind to boronic acid to form the less reactive boronate ester. They used the retardation of the Suzuki−Miyaura homocoupling reaction to develop fluorescent sensors for glucose detection. Subsequently, Jain et al. described the use of reducing sugars in palladium mediated cross-coupling reactions, in which the metal was catalyzing multiple, mechanistically distinct steps; autotandem catalysis (Scheme 12). After screening nine difference reducing sugars, they found that the addition of mannose (3 equiv) gave the desired cross-coupled products of Suzuki−Miyaura and Mizoroki−Heck reactions, while concurrently reducing the nitro functionality to an aniline. For example, reaction of halo-nitrobenzenes with arylboronic acids in aqueous DMF at 130 °C (microwave) gave the coupled biaryl anilines in moderate to excellent yields. Similarly, the reaction of iodo-nitrobenzenes with styrenes under the same reaction conditions afforded substituted amino-stilbenes in good to excellent yields. It is unclear from the analysis conducted by the researchers whether the mannose is simply acting as a ligand and source of hydrogen under the reaction conditions, or if it is also stabilizing in situ formed nanoparticles.

Building upon our work discussed above, we recently reported the use of glucose derived nanoparticles for the...
The reaction of aryl halides with alkenes or alkynes proceeded in moderate to excellent yields to afford stilbenes or substituted alkynes, respectively. The palladium(0) nanoparticle catalysts were formed in situ from palladium(II) acetate (2 mol %) via the addition of glucose (4–10 mol %) to the reaction. In addition, a Suzuki–Miyaura protocol for the synthesis of biaryls in aqueous DMF was developed using the same in situ derived palladium(0) nanoparticles. Importantly, this protocol was also viable for aryl bromides. In contrast to the study by Jian et al., the nitro functionality was not reduced in any of the three cross-coupling reactions that were investigated. This is possibly due to the relatively small amount of glucose that was added to the reaction (cf. Scheme 12). EF-TEM analysis of the in situ formed nanoparticles confirmed that the palladium was surrounded by a hydrophilic, hydroxylated shell. The nature of this shell allowed for the facile partitioning of the catalyst between the aqueous and organic phases, which enabled catalyst recycling for up to four cycles without significant loss of activity.

CONCLUSION

The importance of the addition of monosaccharides to metal-catalyzed processes in organic chemistry has expanded rapidly in recent years. These biorenewable materials can be used for a number of important processes including as ligands for a metal catalyst, to provide the appropriate reduction potential for a chemical process, and as a reducing agent for the formation and stabilization of catalytically active metal nanoparticles. These recent developments in the field will provide the basis for further rapid advancements. Looking forward, catalytic processes in which the reducing potential of renewable sugars is harnessed for the generation, stabilization and turnover of catalytically active metal nanoparticles, sugar-powered catalysis, will be developed. These processes have the potential to make existing protocols greener in terms of time, expense and cost to the environment, as well as allowing for the development of novel metal-catalyzed processes that are currently not possible. Additionally, the inherent chirality of the monosaccharides will be harnessed in order to develop catalytic access to enantiomerically enriched products. In conclusion, the addition of monosaccharides to metal-catalyzed processes has resulted in a number of important new methods that allow access to the small molecules on which we have all come to rely. It is expected that innovative new applications will be developed that build on this exciting research.

AUTHOR INFORMATION

Corresponding Authors
S. H. Kyne. Email: skyne@lincoln.ac.uk. Tel: +44 (0)15 2283 7402.
J. E. Camp. Email: j.e.Camp@hud.ac.uk. Tel: +44 (0)14 8447 3180.

Notes
The authors declare no competing financial interest.

Biographies

Sara H. Kyne obtained her Ph.D. from The University of Melbourne (Australia) under the supervision of Prof. Carl H. Schiesser in the area of physical–organic intramolecular radical chemistry. She then undertook a postdoctoral position with Prof. Jonathan M. Percy (University of Strathclyde, UK) and a Marie Curie Intra European Fellowship with Prof. Louis Fensterbank (Université Pierre et Marie Curie, France). She is currently a lecturer at the University of Lincoln working on the development of sustainable catalysis and radical methodology.

Jason E. Camp obtained his Ph.D. from The Pennsylvania State University under the supervision of Prof. Steven Weinreb working on the total synthesis of the chartellamide and chartelline family of marine natural products. He then was a postdoctoral fellow working with Prof. Donald Craig (Imperial College London) before obtaining lecture-ships at the University of Nottingham and Queen Mary University of London. He is currently a senior lecturer at the University of Huddersfield working on the development of novel autotandem catalysis methods as well as sugar-powered catalysis protocols.
(41) For a recent example, see: Moukarzel, W.; Fittemann, J.; Marty, J.-D. Seed-less amino-sugar mediated synthesis of gold nanostars. *Nanoscale* 2011, 3, 3285–3290.

(69) Kumar, Y.; Matta, A.; Kumar, P.; Parmar, V. S.; Van der Eycken, E.; Singh, B. K. Cu(I)-catalyzed microwave-assisted synthesis of 1,2,3-triazole linked with 4-thiazolidinones: a one-pot sequential approach. *RSC Adv.* 2015, 5, 1628–1639.

