A novel μCT analysis reveals different responses of bioerosion and secondary accretion to environmental variability

Silbiger, Nyssa J. and Guadayol roig, Oscar and Thomas, Florence I. M. and Donahue, Megan J. (2016) A novel μCT analysis reveals different responses of bioerosion and secondary accretion to environmental variability. PLOS ONE, 11 (4). e0153058. ISSN 1932-6203

Full content URL: http://dx.doi.org/10.1371/journal.pone.0153058

Documents
silbiger_etal_2016.pdf
[img]
[Download]
[img]
Preview
PDF
silbiger_etal_2016.pdf - Whole Document
Available under License Creative Commons Attribution.

3MB
Item Type:Article
Item Status:Live Archive

Abstract

Corals build reefs through accretion of calcium carbonate (CaCO3) skeletons, but net reef growth also depends on bioerosion by grazers and borers and on secondary calcification by crustose coralline algae and other calcifying invertebrates. However, traditional field methods for quantifying secondary accretion and bioerosion confound both processes, do not measure them on the same time-scale, or are restricted to 2D methods. In a prior study, we compared multiple environmental drivers of net erosion using pre- and post-deployment micro-computed tomography scans (μCT; calculated as the % change in volume of experimental CaCO3 blocks) and found a shift from net accretion to net erosion with increasing ocean acidity. Here, we present a novel μCT method and detail a procedure that aligns and digitally subtracts pre- and post-deployment μCT scans and measures the simultaneous response of secondary accretion and bioerosion on blocks exposed to the same environmental variation over the same time-scale. We tested our method on a dataset from a prior study and show that it can be used to uncover information previously unattainable using traditional methods. We demonstrated that secondary accretion and bioerosion are driven by different environmental parameters, bioerosion is more sensitive to ocean acidity than secondary accretion, and net erosion is driven more by changes in bioerosion than secondary accretion.

Keywords:Ocean acidification, accretion, bioerosion, natural gradients, coral reefs, JCOpen
Subjects:C Biological Sciences > C180 Ecology
C Biological Sciences > C161 Marine Biology
C Biological Sciences > C150 Environmental Biology
F Physical Sciences > F710 Marine Sciences
Divisions:College of Science > School of Life Sciences
ID Code:23203
Deposited On:26 May 2016 11:37

Repository Staff Only: item control page